Artículos relacionados a The nth-Order Comprehensive Adjoint Sensitivity Analysis...

The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology, Volume I: Overcoming the Curse of Dimensionality: Linear Systems: 1 - Tapa dura

 
9783030963637: The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology, Volume I: Overcoming the Curse of Dimensionality: Linear Systems: 1

Sinopsis

The computational models of physical systems comprise parameters, independent and dependent variables. Since the physical processes themselves are seldom known precisely and since most of the model parameters stem from experimental procedures which are also subject to imprecisions, the results predicted by these models are also imprecise, being affected by the uncertainties underlying the respective model. The functional derivatives (also called "sensitivities") of results (also called "responses") produced by mathematical/computational models are needed for many purposes, including: (i) understanding the model by ranking the importance of the various model parameters; (ii) performing "reduced-order modeling" by eliminating unimportant parameters and/or processes; (iii) quantifying the uncertainties induced in a model response due to model parameter uncertainties; (iv) performing "model validation," by comparing computations to experiments to address the question "does the model represent reality?" (v) prioritizing improvements in the model; (vi) performing data assimilation and model calibration as part of forward "predictive modeling" to obtain best-estimate predicted results with reduced predicted uncertainties; (vii) performing inverse "predictive modeling"; (viii) designing and optimizing the system.

This 3-Volume monograph describes a comprehensive adjoint sensitivity analysis methodology, developed by the author, which enables the efficient and exact computation of arbitrarily high-order sensitivities of model responses in large-scale systems comprising many model parameters. The qualifier "comprehensive" is employed to highlight that the model parameters considered within the framework of this methodology also include the system's uncertain boundaries and internal interfaces in phase-space. The model's responses can be either scalar-valued functionals of the model's parameters and state variables (e.g., as customarily encountered in optimization problems) or general function-valued responses.

Since linear operators admit bona-fide adjoint operators, responses of models that are linear in the state functions (i.e., dependent variables) can depend simultaneously on both the forward and the adjoint state functions. Hence, the sensitivity analysis of such responses warrants the treatment of linear systems in their own right, rather than treating them as particular cases of nonlinear systems. This is in contradistinction to responses for nonlinear systems, which can depend only on the forward state functions, since nonlinear operators do not admit bona-fide adjoint operators (only a linearized form of a nonlinear operator may admit an adjoint operator). Thus, Volume 1 of this book presents the mathematical framework of the nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (abbreviated as "nth-CASAM-L"), which is conceived for the most efficient computation of exactly obtained mathematical expressions of arbitrarily-high-order (nth-order) sensitivities of a generic system response with respect to all of the parameters underlying the respective forward/adjoint systems. Volume 2 of this book presents the application of the nth-CASAM-L to perform a fourth-order sensitivity and uncertainty analysis of an OECD/NEA reactor physics benchmark which is representative of a large-scale model comprises many (21,976) uncertain parameters, thereby amply illustrating the unique potential of the nth-CASAM-L to enable the exact and efficient computation of chosen high-order response sensitivities to model parameters. Volume 3 of this book presents the "nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems" (abbreviation: nth-CASAM-N) for the practical, efficient, and exact computation of arbitrarily-high ord

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Professor Cacuci’s career spans over 40 years in the field of nuclear science and energy, encompassing both academia and large-scale multidisciplinary research centers. His scientific expertise includes predictive best-estimate analysis of large-scale physical and engineering systems, large scale scientific computations and, within nuclear science and engineering, reactor multi-physics, dynamics, and safety. As Scientific Director of The French Alternative Energies and Atomic Energy Commission’s Nuclear Energy Pole, Dr. Cacuci oversaw the scientific activities of over 7000 scientists working in nuclear energy. Dr. Cacuci was a member of the Founding Leadership Team of DOE’s Consortium for Light Water Reactor Simulations.  Since 1984, Prof. Cacuci has been the Editor of “Nuclear Science and Engineering,” a research journal of the American Nuclear Society. He has received many prestigious awards, including four titles of Doctor Honoris Causa,the E. O. Lawrence Award and Gold Medal from the US DOE, the Alexander von Humboldt Prize for Senior Scholars and from the American Nuclear Society, the Arthur Holly Compton Award, the Eugene P. Wigner Award, the Glenn Seaborg Medal, Young Members Engineering Achievement Award, and ANS Fellow. He is a member of several international and national academies of arts and sciences, has made over 600 presentations worldwide, has authored 4 books, 7 book chapters, over 200 peer-reviewed articles, and has edited the comprehensive Handbook of Nuclear Engineering. He is the Director of the Center of Economic Excellence in Nuclear Science and Energy and SmartState Endowed Chair Professor of Mechanical Engineering at University of South Carolina.

De la contraportada

This text describes a comprehensive adjoint sensitivity analysis methodology (C-ASAM), developed by the author, enabling the efficient and exact computation of arbitrarily high-order functional derivatives of model responses to model parameters in large-scale systems. The model’s responses can be either scalar-valued functionals of the model’s parameters and state variables, as customarily encountered, e.g., in optimization problems, or general function-valued responses, which are often of interest but currently not amenable to efficient sensitivity analysis. The C-ASAM framework is set in linearly increasing Hilbert spaces, each of state-function-dimensionality, as opposed to exponentially increasing parameter-dimensional spaces, thereby breaking the so-called “curse of dimensionality” in sensitivity and uncertainty analysis. The C-ASAM applies to any model; the larger the number of model parameters, the more efficient the C-ASAM becomes for computing arbitrarily high-order response sensitivities. To facilitate the understanding of the fundamental concepts underlying C-ASAM, this book first analyzes the less challenging finite-dimensional systems before progressing to infinite dimensional systems which involve boundary and/or initial conditions. The text applies the author’s principles to a series of problems, repeating the same examples with each new higher-order level of the methodology. It includes illustrative paradigm problems from several disciplines, such as particle transport and diffusion, and heat transfer. These paradigm problems are fully worked-out to enable the thorough understanding of the C-ASAM’s principles and their practical application. The book will be helpful to those working in the fields of sensitivity analysis, uncertainty quantification, model validation, optimization, data assimilation, model calibration, sensor fusion, reduced-order modelling, inverse problems and predictive modelling. It serves as a textbook or as supplementary reading for graduate course on these topics, in academic departments in the natural, biological, and physical sciences and engineering.<p></p><p>This Volume One, the first of three, addresses systems that are linear in the state variables, but are nonlinear in the model parameters and associated responses. The selected illustrative paradigm problems share these general characteristics. Understanding the application of the C-ASAM to linear systems will greatly facilitate the understanding of the application of the C-ASAM to nonlinear systems, which are covered in Volume Two.</p><p><br></p><p><br></p>

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783030963668: The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology, Volume I: Overcoming the Curse of Dimensionality: Linear Systems: 1

Edición Destacada

ISBN 10:  3030963667 ISBN 13:  9783030963668
Editorial: Springer, 2023
Tapa blanda

Resultados de la búsqueda para The nth-Order Comprehensive Adjoint Sensitivity Analysis...

Imagen del vendedor

Cacuci, Dan Gabriel
ISBN 10: 3030963632 ISBN 13: 9783030963637
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The computational models of physical systems comprise parameters, independent and dependent variables. Since the physical processes themselves are seldom known precisely and since most of the model parameters stem from experimental procedures whic. Nº de ref. del artículo: 566539669

Contactar al vendedor

Comprar nuevo

EUR 144,94
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Cacuci, Dan Gabriel
Publicado por Springer, 2022
ISBN 10: 3030963632 ISBN 13: 9783030963637
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783030963637_new

Contactar al vendedor

Comprar nuevo

EUR 165,83
Convertir moneda
Gastos de envío: EUR 5,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Dan Gabriel Cacuci
ISBN 10: 3030963632 ISBN 13: 9783030963637
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The computational models of physical systems comprise parameters, independent and dependent variables. Since the physical processes themselves are seldom known precisely and since most of the model parameters stem from experimental procedures which are also subject to imprecisions, the results predicted by these models are also imprecise, being affected by the uncertainties underlying the respective model. The functional derivatives (also called 'sensitivities') of results (also called 'responses') produced by mathematical/computational models are needed for many purposes, including: (i) understanding the model by ranking the importance of the various model parameters; (ii) performing 'reduced-order modeling' by eliminating unimportant parameters and/or processes; (iii) quantifying the uncertainties induced in a model response due to model parameter uncertainties; (iv) performing 'model validation,' by comparing computations to experiments to address the question 'does the modelrepresent reality ' (v) prioritizing improvements in the model; (vi) performing data assimilation and model calibration as part of forward 'predictive modeling' to obtain best-estimate predicted results with reduced predicted uncertainties; (vii) performing inverse 'predictive modeling'; (viii) designing and optimizing the system.This 3-Volume monograph describes a comprehensive adjoint sensitivity analysis methodology, developed by the author, which enables the efficient and exact computation of arbitrarily high-order sensitivities of model responses in large-scale systems comprising many model parameters. The qualifier 'comprehensive' is employed to highlight that the model parameters considered within the framework of this methodology also include the system's uncertain boundaries and internal interfaces in phase-space. The model's responses can be either scalar-valued functionals of the model's parameters and state variables (e.g., as customarily encountered in optimization problems) or general function-valued responses. Since linear operators admit bona-fide adjoint operators, responses of models that are linear in the state functions (i.e., dependent variables) can depend simultaneously on both the forward and the adjoint state functions. Hence, the sensitivity analysis of such responses warrants the treatment of linear systems in their own right, rather than treating them as particular cases of nonlinear systems. This is in contradistinction to responses for nonlinear systems, which can depend only on the forward state functions, since nonlinear operators do not admit bona-fide adjoint operators (only a linearized form of a nonlinear operator may admit an adjoint operator). Thus, Volume 1 of this book presents the mathematical framework of the nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (abbreviated as 'nth-CASAM-L'), which is conceived for the most efficient computation of exactly obtained mathematical expressions of arbitrarily-high-order (nth-order) sensitivities of a generic system response with respect to all of the parameters underlying the respective forward/adjoint systems. Volume 2 of this book presents the application of the nth-CASAM-L to perform a fourth-order sensitivity and uncertainty analysis of an OECD/NEA reactor physics benchmark which is representative of a large-scale model comprises many (21,976) uncertain parameters, thereby amply illustrating the unique potential of the nth-CASAM-L to enable the exact and efficient computation of chosen high-order response sensitivities to model parameters. Volume 3 of this book presents the 'nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems' (abbreviation: nth-CASAM-N) for the practical, efficient, and exact computation of arbitrarily-high orderse 376 pp. Englisch. Nº de ref. del artículo: 9783030963637

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Dan Gabriel Cacuci
Publicado por Springer International Publishing, 2022
ISBN 10: 3030963632 ISBN 13: 9783030963637
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The computational models of physical systems comprise parameters, independent and dependent variables. Since the physical processes themselves are seldom known precisely and since most of the model parameters stem from experimental procedures which are also subject to imprecisions, the results predicted by these models are also imprecise, being affected by the uncertainties underlying the respective model. The functional derivatives (also called 'sensitivities') of results (also called 'responses') produced by mathematical/computational models are needed for many purposes, including: (i) understanding the model by ranking the importance of the various model parameters; (ii) performing 'reduced-order modeling' by eliminating unimportant parameters and/or processes; (iii) quantifying the uncertainties induced in a model response due to model parameter uncertainties; (iv) performing 'model validation,' by comparing computations to experiments to address the question 'does the modelrepresent reality ' (v) prioritizing improvements in the model; (vi) performing data assimilation and model calibration as part of forward 'predictive modeling' to obtain best-estimate predicted results with reduced predicted uncertainties; (vii) performing inverse 'predictive modeling'; (viii) designing and optimizing the system.This 3-Volume monograph describes a comprehensive adjoint sensitivity analysis methodology, developed by the author, which enables the efficient and exact computation of arbitrarily high-order sensitivities of model responses in large-scale systems comprising many model parameters. The qualifier 'comprehensive' is employed to highlight that the model parameters considered within the framework of this methodology also include the system's uncertain boundaries and internal interfaces in phase-space. The model's responses can be either scalar-valued functionals of the model's parameters and state variables (e.g., as customarily encountered in optimization problems) or general function-valued responses. Since linear operators admit bona-fide adjoint operators, responses of models that are linear in the state functions (i.e., dependent variables) can depend simultaneously on both the forward and the adjoint state functions. Hence, the sensitivity analysis of such responses warrants the treatment of linear systems in their own right, rather than treating them as particular cases of nonlinear systems. This is in contradistinction to responses for nonlinear systems, which can depend only on the forward state functions, since nonlinear operators do not admit bona-fide adjoint operators (only a linearized form of a nonlinear operator may admit an adjoint operator). Thus, Volume 1 of this book presents the mathematical framework of the nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (abbreviated as 'nth-CASAM-L'), which is conceived for the most efficient computation of exactly obtained mathematical expressions of arbitrarily-high-order (nth-order) sensitivities of a generic system response with respect to all of the parameters underlying the respective forward/adjoint systems. Volume 2 of this book presents the application of the nth-CASAM-L to perform a fourth-order sensitivity and uncertainty analysis of an OECD/NEA reactor physics benchmark which is representative of a large-scale model comprises many (21,976) uncertain parameters, thereby amply illustrating the unique potential of the nth-CASAM-L to enable the exact and efficient computation of chosen high-order response sensitivities to model parameters. Volume 3 of this book presents the 'nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems' (abbreviation: nth-CASAM-N) for the practical, efficient, and exact computation of arbitrarily-high orderse. Nº de ref. del artículo: 9783030963637

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Dan Gabriel Cacuci
ISBN 10: 3030963632 ISBN 13: 9783030963637
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -The computational models of physical systems comprise parameters, independent and dependent variables. Since the physical processes themselves are seldom known precisely and since most of the model parameters stem from experimental procedures which are also subject to imprecisions, the results predicted by these models are also imprecise, being affected by the uncertainties underlying the respective model. The functional derivatives (also called 'sensitivities') of results (also called 'responses') produced by mathematical/computational models are needed for many purposes, including: (i) understanding the model by ranking the importance of the various model parameters; (ii) performing 'reduced-order modeling' by eliminating unimportant parameters and/or processes; (iii) quantifying the uncertainties induced in a model response due to model parameter uncertainties; (iv) performing 'model validation,' by comparing computations to experiments to address the question 'does the model represent reality ' (v) prioritizing improvements in the model; (vi) performing data assimilation and model calibration as part of forward 'predictive modeling' to obtain best-estimate predicted results with reduced predicted uncertainties; (vii) performing inverse 'predictive modeling'; (viii) designing and optimizing the system.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 376 pp. Englisch. Nº de ref. del artículo: 9783030963637

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Cacuci, Dan Gabriel
Publicado por Springer, 2022
ISBN 10: 3030963632 ISBN 13: 9783030963637
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26395355195

Contactar al vendedor

Comprar nuevo

EUR 207,85
Convertir moneda
Gastos de envío: EUR 9,90
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Cacuci, Dan Gabriel
Publicado por Springer, 2022
ISBN 10: 3030963632 ISBN 13: 9783030963637
Nuevo Tapa dura
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: 401021924

Contactar al vendedor

Comprar nuevo

EUR 216,19
Convertir moneda
Gastos de envío: EUR 10,23
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Cacuci, Dan Gabriel
Publicado por Springer, 2022
ISBN 10: 3030963632 ISBN 13: 9783030963637
Nuevo Tapa dura

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020034019

Contactar al vendedor

Comprar nuevo

EUR 167,84
Convertir moneda
Gastos de envío: EUR 64,56
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Cacuci, Dan Gabriel
Publicado por Springer, 2022
ISBN 10: 3030963632 ISBN 13: 9783030963637
Nuevo Tapa dura
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18395355185

Contactar al vendedor

Comprar nuevo

EUR 224,67
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Cacuci, Dan Gabriel (Author)
Publicado por Springer, 2022
ISBN 10: 3030963632 ISBN 13: 9783030963637
Nuevo Tapa dura

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Brand New. 374 pages. 9.25x6.10x0.88 inches. In Stock. Nº de ref. del artículo: x-3030963632

Contactar al vendedor

Comprar nuevo

EUR 249,40
Convertir moneda
Gastos de envío: EUR 11,56
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito