Artículos relacionados a Supervised and Unsupervised Learning for Data Science...

Supervised and Unsupervised Learning for Data Science (Unsupervised and Semi-Supervised Learning) - Tapa blanda

 
9783030224776: Supervised and Unsupervised Learning for Data Science (Unsupervised and Semi-Supervised Learning)

Sinopsis

Includes new advances in clustering and classification using semi-supervised and unsupervised learning

Address new challenges arising in feature extraction and selection using semi-supervised and unsupervised learning

Features applications from business, engineering, and social science that exploit techniques from semi-supervised and unsupervised learning

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Professor Michael W. Berry is a Full Professor in the Departments of Electrical Engineering and Computer Science (EECS) and Mathematics at the University of Tennessee, Knoxville. He served as Interim Department Head of Computer Science from January 2004 to June 2007, and as Associate Head in the Department of Electrical Engineering and Computer Science from July 2007 to July 2012. He worked in the Communications Product Division of IBM in Raleigh, NC for about 1 year before accepting a research staff position in the Center for Supercomputing Research and Development at the University of Illinois at Urbana-Champaign. In 1990, he received a PhD in Computer Science from the University of Illinois at Urbana-Champaign. Prof. Berry is the co-author of "Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods" (SIAM, 1994) and "Understanding Search Engines: Mathematical Modeling and Text Retrieval, Second Edition" (Bestseller, SIAM, 2005) and editor of "Computational Information Retrieval" (SIAM, 2001), "Survey of Text Mining: Clustering, Classification, and Retrieval" (Springer-Verlag, 2003, 2007), "Lecture Notes in Data Mining" (Bestseller, World Scientific, 2006), "Text Mining: Applications and Theory" (Wiley, 2010), and "High-Performance Scientific Computing" (Springer, 2012). He has published well over 150 peer-refereed journal and conference publications and book chapters. He has organized numerous workshops on Text Mining and was Conference Co-Chair of the 2003 SIAM Third International Conference on Data Mining (May 1-3) in San Francisco, CA. He was Program Co-Chair of the 2004 SIAM Fourth International Conference on Data Mining (April 22-24) in Orlando, FL., and he was a keynote speaker at the 2015 International  Conference on Soft Computing in Data Science (SCDS2015). He was also honorary chair of the 2016 International Conference on Soft Computing in Data Science (SCDS2016) in Kuala Lumpur, Malaysia. His research interests include information retrieval, data and text mining, computational science, bioinformatics, and parallel computing. Prof. Berry's research has been supported by grants and contracts from organizations such as the National Science Foundation, National Institutes of Health, the U.S. Department of Energy, the the National Aeronautics and Space Administration, and the Intel Corporation.

 

Professor Dr Azlinah Mohamed is a Professor at the Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Malaysia. She currently serves as the Dean of the faculty; she was previously the Special Officer to the Vice Chancellor and Head of the Academic Affairs and Development Unit of Universiti Teknologi MARA. She received her MSc (Artificial Intelligence) from University of Bristol, UK and PhD (Decision Support Systems) from Universiti Kebangsaan Malaysia. Her recent research activities and numerous professional publications in international conferences and local journals focus on her interests in the Artificial Intelligence, Decision Support Systems and Soft Computing. She has published well over 180 peer-refereed journal and conference publications and book chapters. She was the Honorary Chair of the 2015, 2016 and 2017 International Conference on Soft Computing in Data Science, and she was a keynote speaker at the 2016 International Conference on Soft Computing in Data Science (SCDS2016). She was also awarded with many competitive grants from ScienceFund, MOSTI and others on both academic and industrial projects for the industry, as well as for the government. Her research works includes the Information Professionals’ Competency Assessment Model and the Multi-Parametric Pectin Lyase-Like Protein Function Classifier which had won many awards. She is also an active member of the Malaysia Information Technology Society (MITS), Lembaga Akredetasi Negara, Malaysia and Artificial Intelligence Society.

 

Professor Bee Wah Yap is a Professor at the Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Malaysia. She is the Head of Advanced Analytics Engineering Centre (AAEC), a Centre of Excellence in FSKM. She received her Bachelor of Science (Education)(Hons) degree, majoring in Mathematics from University of Science Malaysia, Master of Statistics from University of California Riverside and PhD (Statistics) from University of Malaya. Her research interests are in data mining, computational statistics and multivariate data analysis. She actively organizes SCDS2015, SCDS2016 and SCDS2017 conference which focus on Soft Computing in Data Science. She also actively conduct statistical workshops (IBM SPSS STATISTICS, IBM SPSS AMOS, PLS-SEM, SAS EMINER). She has published papers in ISI journals such as Expert Systems with Applications, Journal of Statistical Computation and Simulation, Communication in Statistics-Simulation and Computation, and also in Scopus indexed journals. She is also an active reviewer for international journals such as International Journal of Bank Marketing and Communication in Statistics-Simulation and Computation and Neurocomputing.

De la contraportada

This book covers the state of the art in learning algorithms with an inclusion of semi-supervised methods to provide a broad scope of clustering and classification solutions for big data applications. Case studies and best practices are included along with theoretical models of learning for a comprehensive reference to the field. The book is organized into eight chapters that cover the following topics: discretization, feature extraction and selection, classification, clustering, topic modeling, graph analysis and applications. Practitioners and graduate students can use the volume as an important reference for their current and future research and faculty will find the volume useful for assignments in presenting current approaches to unsupervised and semi-supervised learning in graduate-level seminar courses. The book is based on selected, expanded papers from the Fourth International Conference on Soft Computing in Data Science (2018).

  • Includes new advances in clustering and classification using semi-supervised and unsupervised learning;
  • Address new challenges arising in feature extraction and selection using semi-supervised and unsupervised learning;
  • Features applications from healthcare, engineering, and text/social media mining that exploit techniques from semi-supervised and unsupervised learning.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer
  • Año de publicación2020
  • ISBN 10 3030224775
  • ISBN 13 9783030224776
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de edición1
  • Número de páginas196
  • EditorBerry Michael W., Mohamed Azlinah, Yap Bee Wah
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 4,74 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783030224745: Supervised and Unsupervised Learning for Data Science (Unsupervised and Semi-Supervised Learning)

Edición Destacada

ISBN 10:  3030224740 ISBN 13:  9783030224745
Editorial: Springer, 2019
Tapa dura

Resultados de la búsqueda para Supervised and Unsupervised Learning for Data Science...

Imagen de archivo

Publicado por Springer, 2020
ISBN 10: 3030224775 ISBN 13: 9783030224776
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783030224776_new

Contactar al vendedor

Comprar nuevo

EUR 100,63
Convertir moneda
Gastos de envío: EUR 4,74
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Berry, Michael W.
Publicado por Springer 2020-09, 2020
ISBN 10: 3030224775 ISBN 13: 9783030224776
Nuevo PF

Librería: Chiron Media, Wallingford, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783030224776

Contactar al vendedor

Comprar nuevo

EUR 92,82
Convertir moneda
Gastos de envío: EUR 17,86
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 10 disponibles

Añadir al carrito

Imagen del vendedor

Berry, Michael W.|Mohamed, Azlinah|Yap, Bee Wah
Publicado por Springer International Publishing, 2020
ISBN 10: 3030224775 ISBN 13: 9783030224776
Nuevo Kartoniert / Broschiert
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Includes new advances in clustering and classification using semi-supervised and unsupervised learningAddress new challenges arising in feature extraction and selection using semi-supervised and unsupervised learningFeatures applications from health. Nº de ref. del artículo: 448675823

Contactar al vendedor

Comprar nuevo

EUR 93,00
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Michael W. Berry
ISBN 10: 3030224775 ISBN 13: 9783030224776
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book covers the state of the art in learning algorithms with an inclusion of semi-supervised methods to provide a broad scope of clustering and classification solutions for big data applications. Case studies and best practices are included along with theoretical models of learning for a comprehensive reference to the field. The book is organized into eight chapters that cover the following topics: discretization, feature extraction and selection, classification, clustering, topic modeling, graph analysis and applications. Practitioners and graduate students can use the volume as an important reference for their current and future research and faculty will find the volume useful for assignments in presenting current approaches to unsupervised and semi-supervised learning in graduate-level seminar courses. The book is based on selected, expanded papers from the Fourth International Conference on Soft Computing in Data Science (2018).Includes new advances in clustering and classification using semi-supervised and unsupervised learning;Address new challenges arising in feature extraction and selection using semi-supervised and unsupervised learning;Features applications from healthcare, engineering, and text/social media mining that exploit techniques from semi-supervised and unsupervised learning. 196 pp. Englisch. Nº de ref. del artículo: 9783030224776

Contactar al vendedor

Comprar nuevo

EUR 106,99
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Michael W. Berry
Publicado por Springer International Publishing, 2020
ISBN 10: 3030224775 ISBN 13: 9783030224776
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book covers the state of the art in learning algorithms with an inclusion of semi-supervised methods to provide a broad scope of clustering and classification solutions for big data applications. Case studies and best practices are included along with theoretical models of learning for a comprehensive reference to the field. The book is organized into eight chapters that cover the following topics: discretization, feature extraction and selection, classification, clustering, topic modeling, graph analysis and applications. Practitioners and graduate students can use the volume as an important reference for their current and future research and faculty will find the volume useful for assignments in presenting current approaches to unsupervised and semi-supervised learning in graduate-level seminar courses. The book is based on selected, expanded papers from the Fourth International Conference on Soft Computing in Data Science (2018).Includes new advances in clustering and classification using semi-supervised and unsupervised learning;Address new challenges arising in feature extraction and selection using semi-supervised and unsupervised learning;Features applications from healthcare, engineering, and text/social media mining that exploit techniques from semi-supervised and unsupervised learning. Nº de ref. del artículo: 9783030224776

Contactar al vendedor

Comprar nuevo

EUR 106,99
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2020
ISBN 10: 3030224775 ISBN 13: 9783030224776
Nuevo Tapa blanda

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020010352

Contactar al vendedor

Comprar nuevo

EUR 105,15
Convertir moneda
Gastos de envío: EUR 65,97
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito