Artículos relacionados a Machine Learning: A Quantitative Approach

Machine Learning: A Quantitative Approach - Tapa blanda

 
9781986487528: Machine Learning: A Quantitative Approach

Sinopsis

Machine learning is a newly-reinvigorated field. It promises to foster many technological advances that may improve the quality of our lives significantly, from the use of the latest, popular, high-gear gadgets such as smartphones, home devices, TVs, game consoles and even self-driving cars, and so on. Of course, for all of us in the circles of high education, academic research and various industrial fields, it offers more challenges and more opportunities.

Whether you are a CS student taking a machine learning class or a scientist or an engineer entering the field of machine learning, this text helps you get up to speed with machine learning quickly and systematically. By adopting a quantitative approach, you will be able to grasp many of the machine learning core concepts, algorithms, models, methodologies, strategies and best practices within a minimal amount of time. Throughout the text, you will be provided with proper textual explanations and graphical exhibitions augmented not only with relevant mathematics for its rigor, conciseness, and necessity but also with high-quality examples.

The text encourages you to take a hands-on approach while grasping all rigorous, necessary mathematical underpinnings behind various ML models. Specifically, this text helps you:

  • Understand what problems machine learning can help solve
  • Understand various machine learning models, with the strengths and limitations of each model
  • Understand how various major machine learning algorithms work behind the scene so that you would be able to optimize, tune, and size various models more effectively and efficiently
  • Understand a few state-of-the-art neural network architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Autoencoders (AEs), and so on
  • More importantly, you can learn how to train and run practically usable deep learning models on macOS and Linux-based instances with GPUs

Solutions to exercises are also provided to help you self-check your self-paced learning.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Machine learning is a newly-reinvigorated field. It promises to foster many technological advances that may improve the quality of our life significantly, from the use of latest, popular, high-gear gadgets such as smart phones, home devices, TVs, game consoles and even self-driving cars, and so on, to even more fun social and shopping experiences. Of course, for all of us in the circles of high education, academic research and various industrial fields, it offers more challenges and more opportunities. Whether you are a CS student taking a machine learning class or targeting a machine learning degree, or a scientist or an engineer entering the field of machine learning, this text helps you get up to speed with machine learning quickly and systematically. By adopting a quantitative approach, you will be able to grasp many of the machine learning core concepts, algorithms, models, methodologies, strategies and best practices within a minimal amount of time. Throughout the text, you will be provided with proper textual explanations and graphical exhibitions, augmented not only with relevant mathematics for its rigor, conciseness, and necessity but also with high quality examples. The text encourages you to take a hands-on approach while grasping all rigorous, necessary mathematical underpinnings behind various machine learning models. Specifically, this text helps you: *Understand what problems machine learning can help solve *Understand various machine learning models, with the strengths and limitations of each model *Understand how various major machine learning algorithms work behind the scene so that you would be able to optimize, tune, and size various models more effectively and efficiently *Understand a few state-of-the-art neural network architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Autoencoders (AEs), and so on The author’s goal is that after you are done with this text, you should be able to start embarking on various serious machine learning projects immediately, either using conventional machine learning models or state-of-the-art deep neural network models.

Biografía del autor

HENRY H. LIU, PHD, is a computer software performance practitioner and a machine learning researcher with a physicist background. During his prior physicist career, he achieved high-impact results with extraordinarily accurate theoretical research and predictive modeling on the motion of particles traveling at nearly the speed of light. After jumped to computers, he applied his research and predictive modeling skills to computer software system performance challenges and achieved amazingly accurate forecasts & predictions in special event driven, unusually high traffic production environment. He is interested in leveraging his knowledge in advanced mathematics and extensive research and practicing experience to help advance machine learning for solving real application problems.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Aceptable
Befriedigend/Good: Durchschnittlich...
Ver este artículo

EUR 6,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 25,50 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781985136625: Machine Learning: A Quantitative Approach

Edición Destacada

ISBN 10:  1985136627 ISBN 13:  9781985136625
Editorial: CreateSpace Independent Publishi..., 2018
Tapa blanda

Resultados de la búsqueda para Machine Learning: A Quantitative Approach

Imagen de archivo

Liu, Henry H
ISBN 10: 1986487520 ISBN 13: 9781986487528
Antiguo o usado Tapa blanda

Librería: medimops, Berlin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. Nº de ref. del artículo: M01986487520-G

Contactar al vendedor

Comprar usado

EUR 38,79
Convertir moneda
Gastos de envío: EUR 6,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Henry H Liu
Publicado por Perfmath, 2018
ISBN 10: 1986487520 ISBN 13: 9781986487528
Antiguo o usado Paperback

Librería: True Oak Books, Highland, NY, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Very Good+. No Edition Stated. 332 pages; Very Good condition. No noteworthy defects. No markings. ; - Your satisfaction is our priority. We offer free returns and respond promptly to all inquiries. Your item will be carefully cushioned in bubble wrap and securely boxed. All orders ship on the same or next business day. Buy with confidence. Nº de ref. del artículo: HVD-52025-OS-0

Contactar al vendedor

Comprar usado

EUR 39,36
Convertir moneda
Gastos de envío: EUR 21,25
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Liu, Henry H
ISBN 10: 1986487520 ISBN 13: 9781986487528
Nuevo Paperback

Librería: Toscana Books, AUSTIN, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Nº de ref. del artículo: Scanned1986487520

Contactar al vendedor

Comprar nuevo

EUR 223,84
Convertir moneda
Gastos de envío: EUR 25,50
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito