Artículos relacionados a Neural Networks for Conditional Probability Estimation:...

Neural Networks for Conditional Probability Estimation: Forecasting Beyond Point Predictions (Perspectives in Neural Computing) - Tapa blanda

 
9781852330958: Neural Networks for Conditional Probability Estimation: Forecasting Beyond Point Predictions (Perspectives in Neural Computing)

Sinopsis

Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus­ sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be­ nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus­ sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be­ nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5.

Reseña del editor

This volume presents a neural network architecture for the prediction of conditional probability densities - which is vital when carrying out universal approximation on variables which are either strongly skewed or multimodal. Two alternative approaches are discussed: the GM network, in which all parameters are adapted in the training scheme, and the GM-RVFL model which draws on the random functional link net approach. Points of particular interest are: - it examines the modification to standard approaches needed for conditional probability prediction; - it provides the first real-world test results for recent theoretical findings about the relationship between generalisation performance of committees and the over-flexibility of their members; This volume will be of interest to all researchers, practitioners and postgraduate / advanced undergraduate students working on applications of neural networks - especially those related to finance and pattern recognition.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Bueno
This books is in Very good condition...
Ver este artículo

EUR 6,82 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 2,25 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781447108481: Neural Networks for Conditional Probability Estimation: Forecasting Beyond Point Predictions

Edición Destacada

ISBN 10:  1447108485 ISBN 13:  9781447108481
Editorial: Springer, 2011
Tapa blanda

Resultados de la búsqueda para Neural Networks for Conditional Probability Estimation:...

Imagen del vendedor

Husmeier, Dirk
Publicado por Springer, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Antiguo o usado Tapa blanda

Librería: Solr Books, Lincolnwood, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: very_good. This books is in Very good condition. There may be a few flaws like shelf wear and some light wear. Nº de ref. del artículo: 5D4000008WHW_ns

Contactar al vendedor

Comprar usado

EUR 41,11
Convertir moneda
Gastos de envío: EUR 6,82
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Husmeier, Dirk
Publicado por Springer, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Antiguo o usado Tapa blanda

Librería: Phatpocket Limited, Waltham Abbey, HERTS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Nº de ref. del artículo: Z1-B-017-02028

Contactar al vendedor

Comprar usado

EUR 43,83
Convertir moneda
Gastos de envío: EUR 12,25
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Husmeier, Dirk
Publicado por Springer, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 890682-n

Contactar al vendedor

Comprar nuevo

EUR 53,94
Convertir moneda
Gastos de envío: EUR 2,25
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen de archivo

Dirk Husmeier
Publicado por Springer London Ltd, England, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Nuevo Paperback

Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5. Chapter 1 demonstrates that even for a deterministic system and 'be nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781852330958

Contactar al vendedor

Comprar nuevo

EUR 61,57
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Husmeier, Dirk
Publicado por Springer, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Antiguo o usado Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 890682

Contactar al vendedor

Comprar usado

EUR 61,11
Convertir moneda
Gastos de envío: EUR 2,25
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen de archivo

Husmeier, Dirk
Publicado por Springer, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9781852330958

Contactar al vendedor

Comprar nuevo

EUR 65,09
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Husmeier, Dirk:
ISBN 10: 1852330953 ISBN 13: 9781852330958
Antiguo o usado Softcover

Librería: Roland Antiquariat UG haftungsbeschränkt, Weinheim, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Softcover. XXIII, 275 S. : graph. Darst. ; 24 cm Like new. Unread book. --- Neuwertiger Zustand. Ungelesenes Buch. 9781852330958 Sprache: Deutsch Gewicht in Gramm: 467 Softcover reprint of the original 1st ed. 1999. Nº de ref. del artículo: 200027

Contactar al vendedor

Comprar usado

EUR 56,00
Convertir moneda
Gastos de envío: EUR 14,95
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Husmeier, Dirk
Publicado por Springer, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9781852330958_new

Contactar al vendedor

Comprar nuevo

EUR 58,27
Convertir moneda
Gastos de envío: EUR 13,80
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Dirk Husmeier
Publicado por Springer 2013-10-04, 2013
ISBN 10: 1852330953 ISBN 13: 9781852330958
Nuevo Paperback

Librería: Chiron Media, Wallingford, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9781852330958

Contactar al vendedor

Comprar nuevo

EUR 56,65
Convertir moneda
Gastos de envío: EUR 17,84
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 10 disponibles

Añadir al carrito

Imagen del vendedor

Dirk Husmeier
Publicado por Springer, Springer Feb 1999, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5. 300 pp. Englisch. Nº de ref. del artículo: 9781852330958

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Existen otras 11 copia(s) de este libro

Ver todos los resultados de su búsqueda