The book presents variational methods combined with boundary integral equation techniques in application to a model of dynamic bending of plates with transverse shear deformation. The emphasis is on the rigorous mathematical investigation of the model, which covers a complete study of the well-posedness of a number of initial-boundary value problems, their reduction to time-dependent boundary integral equations by means of suitable potential representations, and the solution of the latter in Sobolev spaces. The analysis, performed in spaces of distributions, is applicable to a wide variety of data with less smoothness than that required in the corresponding classical problems, and is very useful for constructing error estimates in numerical computations. The presentation is detailed and clear, yet reasonably concise.
"Sinopsis" puede pertenecer a otra edición de este libro.
Igor Chudinovich is Professor of Mathematics at the University of Guanajuato, Mexico, and Christian Constanda is Oliphant Professor of Mathematical Sciences at the University of Tulsa, USA.
The book presents variational methods combined with boundary integral equation techniques in application to a model of dynamic bending of plates with transverse shear deformation. The emphasis is on the rigorous mathematical investigation of the model, which covers a complete study of the well-posedness of a number of initial-boundary value problems, their reduction to time-dependent boundary integral equations by means of suitable potential representations, and the solution of the latter in Sobolev spaces.
The analysis, performed in spaces of distributions, is applicable to a wide variety of data with less smoothness than that required in the corresponding classical problems, and is very useful for constructing error estimates in numerical computations. The presentation is detailed and clear, yet reasonably concise. This illustrative model was chosen because of its practical importance and some unusual mathematical features, but the solution technique developed in the book can easily be adapted to many other hyperbolic systems of partial differential equations arising in continuum mechanics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,35 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Variational and boundary integral equation techniques are two of the most useful methods for solving time-dependent problems described by systems of equations of the form 2 u = Au, 2 t 2 where u = u(x,t) is a vector-valued function, x is a point in a domain inR or 3 R,and A is a linear elliptic di erential operator. To facilitate a better und- standing of these two types of methods, below we propose to illustrate their mechanisms in action on a speci c mathematical model rather than in a more impersonal abstract setting. For this purpose, we have chosen the hyperbolic system of partial di erential equations governing the nonstationary bending of elastic plates with transverse shear deformation. The reason for our choice is twofold. On the one hand, in a certain sense this is a 'hybrid' system, c- sistingofthreeequationsforthreeunknownfunctionsinonlytwoindependent variables, which makes it more unusual-and thereby more interesting to the analyst-than other systems arising in solid mechanics. On the other hand, this particular plate model has received very little attention compared to the so-called classical one, based on Kirchho 's simplifying hypotheses, although, as acknowledged by practitioners, it represents a substantial re nement of the latter and therefore needs a rigorous discussion of the existence, uniqueness, and continuous dependence of its solution on the data before any construction of numerical approximation algorithms can be contemplated. 148 pp. Englisch. Nº de ref. del artículo: 9781849969468
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. An up-to-date, concise and clearly organised treatment of an area that is growing in interestThe first book to illustrate variational methods and potential methods side by side in the study of dynamic problems in elasticity theoryDesigned t. Nº de ref. del artículo: 458524007
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Variational and boundary integral equation techniques are two of the most useful methods for solving time-dependent problems described by systems of equations of the form 2 u = Au, 2 t 2 where u = u(x,t) is a vector-valued function, x is a point in a domain inR or 3 R,and A is a linear elliptic di erential operator. To facilitate a better und- standing of these two types of methods, below we propose to illustrate their mechanisms in action on a speci c mathematical model rather than in a more impersonal abstract setting. For this purpose, we have chosen the hyperbolic system of partial di erential equations governing the nonstationary bending of elastic plates with transverse shear deformation. The reason for our choice is twofold. On the one hand, in a certain sense this is a 'hybrid' system, c- sistingofthreeequationsforthreeunknownfunctionsinonlytwoindependent variables, which makes it more unusual-and thereby more interesting to the analyst-than other systems arising in solid mechanics. On the other hand, this particular plate model has received very little attention compared to the so-called classical one, based on Kirchho 's simplifying hypotheses, although, as acknowledged by practitioners, it represents a substantial re nement of the latter and therefore needs a rigorous discussion of the existence, uniqueness, and continuous dependence of its solution on the data before any construction of numerical approximation algorithms can be contemplated. Nº de ref. del artículo: 9781849969468
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 14366463-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 14366463-n
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 162. Nº de ref. del artículo: 262143537
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 162 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 5704430
Cantidad disponible: 4 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 267. Nº de ref. del artículo: C9781849969468
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781849969468_new
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 162. Nº de ref. del artículo: 182143547
Cantidad disponible: 4 disponibles