Evolutionary algorithms are bio-inspired algorithms based on Darwin’s theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods.
In six chapters, this book presents the essential knowledge required to efficiently implement evolutionary algorithms.
Chapter 1 describes a generic evolutionary algorithm as well as the basic operators that compose it. Chapter 2 is devoted to the solving of continuous optimization problems, without constraint. Three leading approaches are described and compared on a set of test functions. Chapter 3 considers continuous optimization problems with constraints. Various approaches suitable for evolutionary methods are presented. Chapter 4 is related to combinatorial optimization. It provides a catalog of variation operators to deal with order-based problems. Chapter 5 introduces the basic notions required to understand the issue of multi-objective optimization and a variety of approaches for its application. Finally, Chapter 6 describes different approaches of genetic programming able to evolve computer programs in the context of machine learning.
"Sinopsis" puede pertenecer a otra edición de este libro.
Alain PÉTROWSKI is Associate Professor in the Department of Networks and Mobile Multimedia Services at the Telecom-SudParis, Institut Mines-Télécom, Paris-Saclay University, France. His main research interests are related to optimization, metaheuristics and machine learning.
Sana BEN-HAMIDA is Associate Professor at the Paris Ouest University and Associate Researcher at the Computer Science Laboratory of the Paris Dauphine University in France. Her main research interests include evolutionary computation, machine learning and related applications.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEOCT25-220463
Cantidad disponible: 1 disponibles
Librería: ALLBOOKS1, Direk, SA, Australia
Nº de ref. del artículo: SHAK220463
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2912160248532
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 24793738-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 24793738-n
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. Nº de ref. del artículo: 26372812846
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 24793738
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781848218048
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. Nº de ref. del artículo: 374281201
Cantidad disponible: 1 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. Evolutionary algorithms are bio-inspired algorithms based on Darwins theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods. In six chapters, this book presents the essential knowledge required to efficiently implement evolutionary algorithms. Chapter 1 describes a generic evolutionary algorithm as well as the basic operators that compose it. Chapter 2 is devoted to the solving of continuous optimization problems, without constraint. Three leading approaches are described and compared on a set of test functions. Chapter 3 considers continuous optimization problems with constraints. Various approaches suitable for evolutionary methods are presented. Chapter 4 is related to combinatorial optimization. It provides a catalog of variation operators to deal with order-based problems. Chapter 5 introduces the basic notions required to understand the issue of multi-objective optimization and a variety of approaches for its application. Finally, Chapter 6 describes different approaches of genetic programming able to evolve computer programs in the context of machine learning. Evolutionary algorithms are bio-inspired algorithms based on Darwin s theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781848218048
Cantidad disponible: 1 disponibles