Machine learning algorithms are increasingly finding applications in the healthcare sector. Whether assisting a clinician to process an individual patient's data or helping administrators view hospital bed turnover, the volume and complexity of healthcare data is a compelling reason for the development of machine learning based tools to aid in its interpretation and use.
This edited book focuses on the applications of machine learning in the healthcare sector, both at the macro-level for guiding policy decisions, and at the granular level, showing how ML techniques can be applied to process an individual patient's medical data to swiftly aid diagnosis.
Written by an international team of experts, the book presents several applications of machine learning in the healthcare sector, including health system planning, optimisation and preparedness, outlining the benefits and challenges of coordination and data sharing. Machine learning has many applications in processing patient data and topics such as arrhythmia detection, image-guided microsurgery and early detection of Alzheimer's disease are discussed in depth. The book also looks at machine learning applications exploiting wearable sensors for real-time analysis and concepts around enhancing physical performance.
Suitable for an audience of computer scientists, healthcare engineers and those involved with digital medicine, this book brings together a plethora of machine learning applications from across the board of the healthcare services.
"Sinopsis" puede pertenecer a otra edición de este libro.
Miguel Hernandez Silveira is the CEO and a principal consultant at Medical Frontier Technology Ltd, UK. He is also CTO of SENTI TECH LTD, UK. He held positions as visiting lecturer at the University of Surrey, UK, and a visiting researcher at Imperial College London, UK. He is also a member of the IET Healthcare Technical Profession Network Committee, and reviewer of IEEE Sensors and IEEE Biomedical Circuits and Systems Journals. His research interests include machine learning, wireless low-power healthcare systems, biomedical sensors, instruments and algorithms, and digital signal processing.
Su-Shin Ang is the CEO and a principal consultant at Medical Frontier Technology Asia Pte Ltd, Singapore. He is a practising engineer, whose passion lies in the application of cutting-edge technology to the improvement of patient care. His research interests include machine learning, healthcare technology, development and deployment of medical devices, and the Internet of medical things.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 9,20 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 25,55 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: WeBuyBooks, Rossendale, LANCS, Reino Unido
Condición: Like New. Most items will be dispatched the same or the next working day. An apparently unread copy in perfect condition. Dust cover is intact with no nicks or tears. Spine has no signs of creasing. Pages are clean and not marred by notes or folds of any kind. Nº de ref. del artículo: wbs9885973338
Cantidad disponible: 1 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781839533358
Cantidad disponible: 2 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Hardback. Condición: New. Machine learning algorithms are increasingly finding applications in the healthcare sector. Whether assisting a clinician to process an individual patient's data or helping administrators view hospital bed turnover, the volume and complexity of healthcare data is a compelling reason for the development of machine learning based tools to aid in its interpretation and use. This edited book focuses on the applications of machine learning in the healthcare sector, both at the macro-level for guiding policy decisions, and at the granular level, showing how ML techniques can be applied to process an individual patient's medical data to swiftly aid diagnosis. Written by an international team of experts, the book presents several applications of machine learning in the healthcare sector, including health system planning, optimisation and preparedness, outlining the benefits and challenges of coordination and data sharing. Machine learning has many applications in processing patient data and topics such as arrhythmia detection, image-guided microsurgery and early detection of Alzheimer's disease are discussed in depth. The book also looks at machine learning applications exploiting wearable sensors for real-time analysis and concepts around enhancing physical performance. Suitable for an audience of computer scientists, healthcare engineers and those involved with digital medicine, this book brings together a plethora of machine learning applications from across the board of the healthcare services. Nº de ref. del artículo: LU-9781839533358
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
Hardback. Condición: New. Machine learning algorithms are increasingly finding applications in the healthcare sector. Whether assisting a clinician to process an individual patient's data or helping administrators view hospital bed turnover, the volume and complexity of healthcare data is a compelling reason for the development of machine learning based tools to aid in its interpretation and use. This edited book focuses on the applications of machine learning in the healthcare sector, both at the macro-level for guiding policy decisions, and at the granular level, showing how ML techniques can be applied to process an individual patient's medical data to swiftly aid diagnosis. Written by an international team of experts, the book presents several applications of machine learning in the healthcare sector, including health system planning, optimisation and preparedness, outlining the benefits and challenges of coordination and data sharing. Machine learning has many applications in processing patient data and topics such as arrhythmia detection, image-guided microsurgery and early detection of Alzheimer's disease are discussed in depth. The book also looks at machine learning applications exploiting wearable sensors for real-time analysis and concepts around enhancing physical performance. Suitable for an audience of computer scientists, healthcare engineers and those involved with digital medicine, this book brings together a plethora of machine learning applications from across the board of the healthcare services. Nº de ref. del artículo: LU-9781839533358
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781839533358_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9781839533358
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9781839533358
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. Nº de ref. del artículo: C9781839533358
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. KlappentextThis edited book focuses on the applications of machine learning in the healthcare sector, both at the macro-level for guiding policy decisions, and at the granular level, showing how machine learning techniques can be appl. Nº de ref. del artículo: 905627909
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 1st edition. 400 pages. 9.25x6.25x1.25 inches. In Stock. Nº de ref. del artículo: x-1839533358
Cantidad disponible: 2 disponibles