Explore the ever-growing world of genetic algorithms to solve search, optimization, and AI-related tasks, and improve machine learning models using Python libraries such as DEAP, scikit-learn, and NumPy
Genetic algorithms are a family of search, optimization, and learning algorithms inspired by the principles of natural evolution. By imitating the evolutionary process, genetic algorithms can overcome hurdles encountered in traditional search algorithms and provide high-quality solutions for a variety of problems. This book will help you get to grips with a powerful yet simple approach to applying genetic algorithms to a wide range of tasks using Python, covering the latest developments in artificial intelligence.
After introducing you to genetic algorithms and their principles of operation, you'll understand how they differ from traditional algorithms and what types of problems they can solve. You'll then discover how they can be applied to search and optimization problems, such as planning, scheduling, gaming, and analytics. As you advance, you'll also learn how to use genetic algorithms to improve your machine learning and deep learning models, solve reinforcement learning tasks, and perform image reconstruction. Finally, you'll cover several related technologies that can open up new possibilities for future applications.
By the end of this book, you'll have hands-on experience of applying genetic algorithms in artificial intelligence as well as in numerous other domains.
This book is for software developers, data scientists, and AI enthusiasts who want to use genetic algorithms to carry out intelligent tasks in their applications. Working knowledge of Python and basic knowledge of mathematics and computer science will help you get the most out of this book.
"Sinopsis" puede pertenecer a otra edición de este libro.
Eyal Wirsansky is a senior data scientist, an experienced software engineer, a technology community leader, and an artificial intelligence researcher. Eyal began his software engineering career over twenty-five years ago as a pioneer in the field of Voice over IP. He currently works as a member of the data platform team at Gradle, Inc. During his graduate studies, he focused his research on genetic algorithms and neural networks. A notable result of this research is a novel supervised machine learning algorithm that integrates both approaches. In addition to his professional roles, Eyal serves as an adjunct professor at Jacksonville University, where he teaches a class on artificial intelligence. He also leads both the Jacksonville, Florida Java User Group and the Artificial Intelligence for Enterprise virtual user group, and authors the developer-focused artificial intelligence blog, ai4java.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 29,92 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 6,84 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: SecondSale, Montgomery, IL, Estados Unidos de America
Condición: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00085801415
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781838557744
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: IQ-9781838557744
Cantidad disponible: 15 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: IQ-9781838557744
Cantidad disponible: 15 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781838557744_new
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Hands-On Genetic Algorithms with Python 1.31. Book. Nº de ref. del artículo: BBS-9781838557744
Cantidad disponible: 5 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9781838557744
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 40563339-n
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 346. Nº de ref. del artículo: 369541727
Cantidad disponible: 4 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. Explore the ever-growing world of genetic algorithms to solve search, optimization, and AI-related tasks, and improve machine learning models using Python libraries such as DEAP, scikit-learn, and NumPyKey FeaturesExplore the ins and outs of genetic algorithms with this fast-paced guideImplement tasks such as feature selection, search optimization, and cluster analysis using PythonSolve combinatorial problems, optimize functions, and enhance the performance of artificial intelligence applicationsBook DescriptionGenetic algorithms are a family of search, optimization, and learning algorithms inspired by the principles of natural evolution. By imitating the evolutionary process, genetic algorithms can overcome hurdles encountered in traditional search algorithms and provide high-quality solutions for a variety of problems. This book will help you get to grips with a powerful yet simple approach to applying genetic algorithms to a wide range of tasks using Python, covering the latest developments in artificial intelligence.After introducing you to genetic algorithms and their principles of operation, you'll understand how they differ from traditional algorithms and what types of problems they can solve. You'll then discover how they can be applied to search and optimization problems, such as planning, scheduling, gaming, and analytics. As you advance, you'll also learn how to use genetic algorithms to improve your machine learning and deep learning models, solve reinforcement learning tasks, and perform image reconstruction. Finally, you'll cover several related technologies that can open up new possibilities for future applications.By the end of this book, you'll have hands-on experience of applying genetic algorithms in artificial intelligence as well as in numerous other domains.What you will learnUnderstand how to use state-of-the-art Python tools to create genetic algorithm-based applicationsUse genetic algorithms to optimize functions and solve planning and scheduling problemsEnhance the performance of machine learning models and optimize deep learning network architectureApply genetic algorithms to reinforcement learning tasks using OpenAI GymExplore how images can be reconstructed using a set of semi-transparent shapesDiscover other bio-inspired techniques, such as genetic programming and particle swarm optimizationWho this book is forThis book is for software developers, data scientists, and AI enthusiasts who want to use genetic algorithms to carry out intelligent tasks in their applications. Working knowledge of Python and basic knowledge of mathematics and computer science will help you get the most out of this book. Nº de ref. del artículo: LU-9781838557744
Cantidad disponible: Más de 20 disponibles