Master the art of predictive modeling with XGBoost and gain hands-on experience in building powerful regression, classification, and time series models using the XGBoost Python API
XGBoost offers a powerful solution for regression and time series analysis, enabling you to build accurate and efficient predictive models. In this book, the authors draw on their combined experience of 40+ years in the semiconductor industry to help you harness the full potential of XGBoost, from understanding its core concepts to implementing real-world applications.
As you progress, you'll get to grips with the XGBoost algorithm, including its mathematical underpinnings and its advantages over other ensemble methods. You'll learn when to choose XGBoost over other predictive modeling techniques, and get hands-on guidance on implementing XGBoost using both the Python API and scikit-learn API. You'll also get to grips with essential techniques for time series data, including feature engineering, handling lag features, encoding techniques, and evaluating model performance. A unique aspect of this book is the chapter on model interpretability, where you'll use tools such as SHAP, LIME, ELI5, and Partial Dependence Plots (PDP) to understand your XGBoost models. Throughout the book, you’ll work through several hands-on exercises and real-world datasets.
By the end of this book, you'll not only be building accurate models but will also be able to deploy and maintain them effectively, ensuring your solutions deliver real-world impact.
This book is for data scientists, machine learning practitioners, analysts, and professionals interested in predictive modeling and time series analysis. Basic coding knowledge and familiarity with Python, GitHub, and other DevOps tools are required.
"Sinopsis" puede pertenecer a otra edición de este libro.
Partha Pritam Deka is a data science leader with 15+ years of experience in semiconductor supply chain and manufacturing. As a senior staff engineer at Intel, he has led AI and machine learning teams, achieving significant cost savings and optimizations. He and his team developed a computer vision system that improved Intel's logistics, earning CSCMP Innovation Award finalist recognition. An active AI community member, Partha is a senior IEEE member and speaker at Intel's AI Everywhere conference. He also reviews for NeurIPS, contributing to AI and analytics in semiconductor manufacturing.
Joyce Weiner is a principal engineer with Intel Corporation. She has over 25 years of experience in the semiconductor industry, having worked in fabrication, assembly and testing, and design. Since the early 2000s, she has deployed applications that use machine learning. Joyce is a black belt in Lean Six Sigma and her area of technical expertise is the application of data science to improve efficiency. She has a BS in Physics from Rensselaer Polytechnic Institute and an MS in Optical Sciences from the University of Arizona.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,18 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 6,87 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781805123057
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781805123057_new
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. XGBoost for Regression Predictive Modeling and Time Series Analysis: Learn how to build, evaluate, and deploy predictive models with expert guidance 1.17. Book. Nº de ref. del artículo: BBS-9781805123057
Cantidad disponible: 5 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 49314360-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 49314360
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 49314360-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 49314360
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - XGBoost for Regression Predictive Modelling and Time Series Analysis will help you get a practical understanding of the XGBoost algorithm. Nº de ref. del artículo: 9781805123057
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26403607592
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 410595319
Cantidad disponible: 4 disponibles