Demystify quantum computing by learning the math it is built on
Quantum computing is an exciting subject that offers hope to solve the world’s most complex problems at a quicker pace. It is being used quite widely in different spheres of technology, including cybersecurity, finance, and many more, but its concepts, such as superposition, are often misunderstood because engineers may not know the math to understand them. This book will teach the requisite math concepts in an intuitive way and connect them to principles in quantum computing.
Starting with the most basic of concepts, 2D vectors that are just line segments in space, you'll move on to tackle matrix multiplication using an instinctive method. Linearity is the major theme throughout the book and since quantum mechanics is a linear theory, you'll see how they go hand in hand. As you advance, you'll understand intrinsically what a vector is and how to transform vectors with matrices and operators. You'll also see how complex numbers make their voices heard and understand the probability behind it all.
It’s all here, in writing you can understand. This is not a stuffy math book with definitions, axioms, theorems, and so on. This book meets you where you’re at and guides you to where you need to be for quantum computing. Already know some of this stuff? No problem! The book is componentized, so you can learn just the parts you want. And with tons of exercises and their answers, you'll get all the practice you need.
If you want to learn quantum computing but are unsure of the math involved, this book is for you. If you’ve taken high school math, you’ll easily understand the topics covered. And even if you haven’t, the book will give you a refresher on topics such as trigonometry, matrices, and vectors. This book will help you gain the confidence to fully understand quantum computation without losing you in the process!
"Sinopsis" puede pertenecer a otra edición de este libro.
Leonard S. Woody III is a senior consultant with 20 years of experience explaining complex subjects to software development clients. For the last 3 years, he has worked at Microsoft, most currently as a program manager for Azure Quantum. He was awarded a BS in computer science and a BS in physics from the University of Virginia. He attained his MS in software engineering from George Mason University. Woody lives in Northern Virginia with his wife and four children. His biggest love is spending time with his family.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 30,01 gastos de envío desde Australia a España
Destinos, gastos y plazos de envíoEUR 6,87 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781801073141
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781801073141
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781801073141
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781801073141_new
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. Demystify quantum computing by learning the math it is built onKey FeaturesBuild a solid mathematical foundation to get started with developing powerful quantum solutionsUnderstand linear algebra, calculus, matrices, complex numbers, vector spaces, and other concepts essential for quantum computingLearn the math needed to understand how quantum algorithms functionBook DescriptionQuantum computing is an exciting subject that offers hope to solve the world's most complex problems at a quicker pace. It is being used quite widely in different spheres of technology, including cybersecurity, finance, and many more, but its concepts, such as superposition, are often misunderstood because engineers may not know the math to understand them. This book will teach the requisite math concepts in an intuitive way and connect them to principles in quantum computing.Starting with the most basic of concepts, 2D vectors that are just line segments in space, you'll move on to tackle matrix multiplication using an instinctive method. Linearity is the major theme throughout the book and since quantum mechanics is a linear theory, you'll see how they go hand in hand. As you advance, you'll understand intrinsically what a vector is and how to transform vectors with matrices and operators. You'll also see how complex numbers make their voices heard and understand the probability behind it all.It's all here, in writing you can understand. This is not a stuffy math book with definitions, axioms, theorems, and so on. This book meets you where you're at and guides you to where you need to be for quantum computing. Already know some of this stuff? No problem! The book is componentized, so you can learn just the parts you want. And with tons of exercises and their answers, you'll get all the practice you need.What you will learnOperate on vectors (qubits) with matrices (gates)Define linear combinations and linear independenceUnderstand vector spaces and their basis setsRotate, reflect, and project vectors with matricesRealize the connection between complex numbers and the Bloch sphereDetermine whether a matrix is invertible and find its eigenvaluesProbabilistically determine the measurement of a qubitTie it all together with bra-ket notationWho this book is forIf you want to learn quantum computing but are unsure of the math involved, this book is for you. If you've taken high school math, you'll easily understand the topics covered. And even if you haven't, the book will give you a refresher on topics such as trigonometry, matrices, and vectors. This book will help you gain the confidence to fully understand quantum computation without losing you in the process! Nº de ref. del artículo: LU-9781801073141
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Essential Mathematics for Quantum Computing: A beginner's guide to just the math you need without needless complexities 0.97. Book. Nº de ref. del artículo: BBS-9781801073141
Cantidad disponible: 5 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Demystify quantum computing by learning the math it is built onKey FeaturesBuild a solid mathematical foundation to get started with developing powerful quantum solutionsUnderstand linear algebra, calculus, matrices, complex numbers, vector spaces, and other concepts essential for quantum computingLearn the math needed to understand how quantum algorithms functionBook DescriptionQuantum computing is an exciting subject that offers hope to solve the world's most complex problems at a quicker pace. It is being used quite widely in different spheres of technology, including cybersecurity, finance, and many more, but its concepts, such as superposition, are often misunderstood because engineers may not know the math to understand them. This book will teach the requisite math concepts in an intuitive way and connect them to principles in quantum computing.Starting with the most basic of concepts, 2D vectors that are just line segments in space, you'll move on to tackle matrix multiplication using an instinctive method. Linearity is the major theme throughout the book and since quantum mechanics is a linear theory, you'll see how they go hand in hand. As you advance, you'll understand intrinsically what a vector is and how to transform vectors with matrices and operators. You'll also see how complex numbers make their voices heard and understand the probability behind it all.It's all here, in writing you can understand. This is not a stuffy math book with definitions, axioms, theorems, and so on. This book meets you where you're at and guides you to where you need to be for quantum computing. Already know some of this stuff? No problem! The book is componentized, so you can learn just the parts you want. And with tons of exercises and their answers, you'll get all the practice you need.What you will learnOperate on vectors (qubits) with matrices (gates)Define linear combinations and linear independenceUnderstand vector spaces and their basis setsRotate, reflect, and project vectors with matricesRealize the connection between complex numbers and the Bloch sphereDetermine whether a matrix is invertible and find its eigenvaluesProbabilistically determine the measurement of a qubitTie it all together with bra-ket notationWho this book is forIf you want to learn quantum computing but are unsure of the math involved, this book is for you. If you've taken high school math, you'll easily understand the topics covered. And even if you haven't, the book will give you a refresher on topics such as trigonometry, matrices, and vectors. This book will help you gain the confidence to fully understand quantum computation without losing you in the process! Nº de ref. del artículo: LU-9781801073141
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. Nº de ref. del artículo: C9781801073141
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Demystify quantum computing by learning the math it is built onKey FeaturesBuild a solid mathematical foundation to get started with developing powerful quantum solutionsUnderstand linear algebra, calculus, matrices, complex numbers, vector spaces, and other concepts essential for quantum computingLearn the math needed to understand how quantum algorithms functionBook DescriptionQuantum computing is an exciting subject that offers hope to solve the world's most complex problems at a quicker pace. It is being used quite widely in different spheres of technology, including cybersecurity, finance, and many more, but its concepts, such as superposition, are often misunderstood because engineers may not know the math to understand them. This book will teach the requisite math concepts in an intuitive way and connect them to principles in quantum computing.Starting with the most basic of concepts, 2D vectors that are just line segments in space, you'll move on to tackle matrix multiplication using an instinctive method. Linearity is the major theme throughout the book and since quantum mechanics is a linear theory, you'll see how they go hand in hand. As you advance, you'll understand intrinsically what a vector is and how to transform vectors with matrices and operators. You'll also see how complex numbers make their voices heard and understand the probability behind it all.It's all here, in writing you can understand. This is not a stuffy math book with definitions, axioms, theorems, and so on. This book meets you where you're at and guides you to where you need to be for quantum computing. Already know some of this stuff? No problem! The book is componentized, so you can learn just the parts you want. And with tons of exercises and their answers, you'll get all the practice you need.What you will learnOperate on vectors (qubits) with matrices (gates)Define linear combinations and linear independenceUnderstand vector spaces and their basis setsRotate, reflect, and project vectors with matricesRealize the connection between complex numbers and the Bloch sphereDetermine whether a matrix is invertible and find its eigenvaluesProbabilistically determine the measurement of a qubitTie it all together with bra-ket notationWho this book is forIf you want to learn quantum computing but are unsure of the math involved, this book is for you. If you've taken high school math, you'll easily understand the topics covered. And even if you haven't, the book will give you a refresher on topics such as trigonometry, matrices, and vectors. This book will help you gain the confidence to fully understand quantum computation without losing you in the process! Nº de ref. del artículo: LU-9781801073141
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. Demystify quantum computing by learning the math it is built onKey FeaturesBuild a solid mathematical foundation to get started with developing powerful quantum solutionsUnderstand linear algebra, calculus, matrices, complex numbers, vector spaces, and other concepts essential for quantum computingLearn the math needed to understand how quantum algorithms functionBook DescriptionQuantum computing is an exciting subject that offers hope to solve the world's most complex problems at a quicker pace. It is being used quite widely in different spheres of technology, including cybersecurity, finance, and many more, but its concepts, such as superposition, are often misunderstood because engineers may not know the math to understand them. This book will teach the requisite math concepts in an intuitive way and connect them to principles in quantum computing.Starting with the most basic of concepts, 2D vectors that are just line segments in space, you'll move on to tackle matrix multiplication using an instinctive method. Linearity is the major theme throughout the book and since quantum mechanics is a linear theory, you'll see how they go hand in hand. As you advance, you'll understand intrinsically what a vector is and how to transform vectors with matrices and operators. You'll also see how complex numbers make their voices heard and understand the probability behind it all.It's all here, in writing you can understand. This is not a stuffy math book with definitions, axioms, theorems, and so on. This book meets you where you're at and guides you to where you need to be for quantum computing. Already know some of this stuff? No problem! The book is componentized, so you can learn just the parts you want. And with tons of exercises and their answers, you'll get all the practice you need.What you will learnOperate on vectors (qubits) with matrices (gates)Define linear combinations and linear independenceUnderstand vector spaces and their basis setsRotate, reflect, and project vectors with matricesRealize the connection between complex numbers and the Bloch sphereDetermine whether a matrix is invertible and find its eigenvaluesProbabilistically determine the measurement of a qubitTie it all together with bra-ket notationWho this book is forIf you want to learn quantum computing but are unsure of the math involved, this book is for you. If you've taken high school math, you'll easily understand the topics covered. And even if you haven't, the book will give you a refresher on topics such as trigonometry, matrices, and vectors. This book will help you gain the confidence to fully understand quantum computation without losing you in the process! Nº de ref. del artículo: LU-9781801073141
Cantidad disponible: Más de 20 disponibles