Gain practical, recipe-based insights into the world of deep learning using Apache MXNet for flexible and efficient research prototyping, training, and deployment to production.
Key Features:
Book Description:
MXNet is an open-source deep learning framework that allows you to train and deploy neural network models and implement state-of-the-art (SOTA) architectures in CV, NLP, and more. With this cookbook, you will be able to construct fast, scalable deep learning solutions using Apache MXNet.
This book will start by showing you the different versions of MXNet and what version to choose before installing your library. You will learn to start using MXNet/Gluon libraries to solve classification and regression problems and get an idea on the inner workings of these libraries. This book will also show how to use MXNet to analyze toy datasets in the areas of numerical regression, data classification, picture classification, and text classification. You'll also learn to build and train deep-learning neural network architectures from scratch, before moving on to complex concepts like transfer learning. You'll learn to construct and deploy neural network architectures including CNN, RNN, LSTMs, Transformers, and integrate these models into your applications.
By the end of the book, you will be able to utilize the MXNet and Gluon libraries to create and train deep learning networks using GPUs and learn how to deploy them efficiently in different environments.
What You Will Learn:
Who this book is for:
This book is ideal for Data scientists, machine learning engineers, and developers who want to work with Apache MXNet for building fast, scalable deep learning solutions. The reader is expected to have a good understanding of Python programming and a working environment with Python 3.6+. A good theoretical understanding of mathematics for deep learning will be beneficial.
"Sinopsis" puede pertenecer a otra edición de este libro.
Andrés P. Torres, is the Head of Perception at Oxa, a global leader in industrial autonomous vehicles, leading the design and development of State-Of The-Art algorithms for autonomous driving. Before, Andrés had a stint as an advisor and Head of AI at an early-stage content generation startup, Maekersuite, where he developed several AI-based algorithms for mobile phones and the web. Prior to this, Andrés was a Software Development Manager at Amazon Prime Air, developing software to optimize operations for autonomous drones. I want to especially thank Marta M. Civera for most of the illustrations in Chapter 5, another example of her wonderful skills, apart from being a fantastic Architect and, above all, partner.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 6,87 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781800569607
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781800569607_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781800569607
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781800569607
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Deep Learning with MXNet Cookbook: Discover an extensive collection of recipes for creating and implementing AI models on MXNet 1.4. Book. Nº de ref. del artículo: BBS-9781800569607
Cantidad disponible: 5 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. Nº de ref. del artículo: C9781800569607
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Gain practical, recipe-based insights into the world of deep learning using Apache MXNet for flexible and efficient research prototyping, training, and deployment to production.Key Features:A step-by-step tutorial towards using MXNet products to create scalable deep learning applicationsImplement tasks such as transfer learning, transformers, and more with the required speed and scalabilityAnalyze the performance of models and fine-tune them for accuracy, scalability, and speedBook Description:MXNet is an open-source deep learning framework that allows you to train and deploy neural network models and implement state-of-the-art (SOTA) architectures in CV, NLP, and more. With this cookbook, you will be able to construct fast, scalable deep learning solutions using Apache MXNet.This book will start by showing you the different versions of MXNet and what version to choose before installing your library. You will learn to start using MXNet/Gluon libraries to solve classification and regression problems and get an idea on the inner workings of these libraries. This book will also show how to use MXNet to analyze toy datasets in the areas of numerical regression, data classification, picture classification, and text classification. You'll also learn to build and train deep-learning neural network architectures from scratch, before moving on to complex concepts like transfer learning. You'll learn to construct and deploy neural network architectures including CNN, RNN, LSTMs, Transformers, and integrate these models into your applications.By the end of the book, you will be able to utilize the MXNet and Gluon libraries to create and train deep learning networks using GPUs and learn how to deploy them efficiently in different environments.What You Will Learn:Understand MXNet and Gluon libraries and their advantagesBuild and train network models from scratch using MXNetApply transfer learning for more complex, fine-tuned network architecturesSolve modern Computer Vision and NLP problems using neural network techniquesTrain and evaluate models using GPUs and learn how to deploy themExplore state-of-the-art models with GPUs and leveraging modern optimization techniquesImprove inference run-times and deploy models in productionWho this book is for:This book is ideal for Data scientists, machine learning engineers, and developers who want to work with Apache MXNet for building fast, scalable deep learning solutions. The reader is expected to have a good understanding of Python programming and a working environment with Python 3.6+. A good theoretical understanding of mathematics for deep learning will be beneficial. Nº de ref. del artículo: 9781800569607
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26402041004
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 394336115
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18402040998
Cantidad disponible: 4 disponibles