The growth of innovative cyber threats, many based on metamorphosing techniques, has led to security breaches and the exposure of critical information in sites that were thought to be impenetrable. The consequences of these hacking actions were, inevitably, privacy violation, data corruption, or information leaking. Machine learning and data mining techniques have significant applications in the domains of privacy protection and cybersecurity, including intrusion detection, authentication, and website defacement detection, that can help to combat these breaches. Applications of Machine Learning and Deep Learning for Privacy and Cybersecurity provides machine and deep learning methods for analysis and characterization of events regarding privacy and anomaly detection as well as for establishing predictive models for cyber attacks or privacy violations. It provides case studies of the use of these techniques and discusses the expected future developments on privacy and cybersecurity applications. Covering topics such as behavior-based authentication, machine learning attacks, and privacy preservation, this book is a crucial resource for IT specialists, computer engineers, industry professionals, privacy specialists, security professionals, consultants, researchers, academicians, and students and educators of higher education.
"Sinopsis" puede pertenecer a otra edición de este libro.
Victor Lobo is an Invited Full Professor, NOVA Information Management School (NOVA IMS).
Anacleto Correia (M) is an Associate Professor and lecturer of Management and Information Systems subjects at the Portuguese Navy Academy. He holds a Ph.D. in Computer Science, an M.Sc. in Statistics and Information Management, a B.Sc. degree in Management, and also a B.Sc. at Portuguese Naval Academy. His research interests are focused on requirements engineering, software engineering, process modeling, data mining, machine learning, and business engineering. He has also more than 20 years of experience in industry-leading projects and architecting large software development projects and is the author of dozens of scientific papers in journals and conference proceedings.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 4,71 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781799894315_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781799894315
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781799894315
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides machine and deep learning methods for analysis and characterization of events regarding privacy and anomaly detection as well as for establishing predictive models for cyber attacks or privacy violations. The book provides case studies of the use o. Nº de ref. del artículo: 596927832
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The growth of innovative cyber threats, many based on metamorphosing techniques, has led to security breaches and the exposure of critical information in sites that were thought to be impenetrable. The consequences of these hacking actions were, inevitably, privacy violation, data corruption, or information leaking. Machine learning and data mining techniques have significant applications in the domains of privacy protection and cybersecurity, including intrusion detection, authentication, and website defacement detection, that can help to combat these breaches. Applications of Machine Learning and Deep Learning for Privacy and Cybersecurity provides machine and deep learning methods for analysis and characterization of events regarding privacy and anomaly detection as well as for establishing predictive models for cyber attacks or privacy violations. It provides case studies of the use of these techniques and discusses the expected future developments on privacy and cybersecurity applications. Covering topics such as behavior-based authentication, machine learning attacks, and privacy preservation, this book is a crucial resource for IT specialists, computer engineers, industry professionals, privacy specialists, security professionals, consultants, researchers, academicians, and students and educators of higher education. Nº de ref. del artículo: 9781799894315
Cantidad disponible: 1 disponibles