With the development of computing technologies in today's modernized world, software packages have become easily accessible. Open source software, specifically, is a popular method for solving certain issues in the field of computer science. One key challenge is analyzing big data due to the high amounts that organizations are processing. Researchers and professionals need research on the foundations of open source software programs and how they can successfully analyze statistical data. Open Source Software for Statistical Analysis of Big Data: Emerging Research and Opportunities provides emerging research exploring the theoretical and practical aspects of cost-free software possibilities for applications within data analysis and statistics with a specific focus on R and Python. Featuring coverage on a broad range of topics such as cluster analysis, time series forecasting, and machine learning, this book is ideally designed for researchers, developers, practitioners, engineers, academicians, scholars, and students who want to more fully understand in a brief and concise format the realm and technologies of open source software for big data and how it has been used to solve large-scale research problems in a multitude of disciplines.
"Sinopsis" puede pertenecer a otra edición de este libro.
Dr. Richard S. Segall is Professor of Information Systems and Business Analytics in Neil Griffin College of Business at Arkansas State University in Jonesboro, AR where he also taught for ten years in the College of Engineering & Computer Science Master of Engineering Management (MEM) Program and is Affiliated Faculty of the Environmental Sciences Program and Center for No-Boundary Thinking (CNBT). He is also an Affiliated Faculty at the University of Arkansas at Little Rock (UALR) where he serves on thesis committees. His research interests include data mining, text mining, web mining, database management, Big Data, and mathematical modeling. His research has been funded by National Research Council (NRC), U.S. Air Force (USAF), National Aeronautical and Space Administration (NASA), Arkansas Biosciences Institute (ABI), and Arkansas Science & Technology Authority (ASTA). His publications have appeared in IGI Global journals of: International Journal of Fog Computing (IJFC), International Journal of Open Source Software and Processes (IJOSP), and International Journal of Big Data and Analytics in Healthcare (IJBDAH). He is also a member of the Editorial Review Board for the International Journal of Fog Computing (IJFC).
Gao Niu is an Assistant Professor in Actuarial Science and Program Coordinator of Actuarial Math Program at Bryant University. He also serves as the Faculty Consultant of the Janet & Mark L Goldenson Center for Actuarial Research at the University of Connecticut. He has a doctorate in actuarial science from the University of Connecticut, is an Associate of the Casualty Actuarial Society and a Member of the American Academy of Actuaries. Dr. Niu has years of experience in academic actuarial research and consulting practice. His research area includes but not limited to the following: big data analytics application in insurance industry, property and casualty insurance practice, predictive modeling, agent-based modeling, financial planning, life insurance and health insurance pricing, reserving and data mining.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,42 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 4,65 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781799827689_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9781799827689
Cantidad disponible: 1 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Hardcover. Condición: New. Nº de ref. del artículo: 6666-GRD-9781799827689
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. New copy - Usually dispatched within 3 working days. 209. Nº de ref. del artículo: B9781799827689
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 40537803-n
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Presents research exploring the theoretical and practical aspects of cost-free software possibilities for applications within data analysis and statistics with a specific focus on R and Python. The book features coverage on a broad range of topics, includin. Nº de ref. del artículo: 448342208
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 40537803
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 40537803-n
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 237 pages. 10.00x7.25x1.00 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __1799827682
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 40537803
Cantidad disponible: 1 disponibles