In today's world, we are increasingly exposed to the words "machine learning" (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation. Over the past few years, ML has gradually permeated the financial sector, reshaping the landscape of quantitative finance as we know it.
An Introduction to Machine Learning in Quantitative Finance aims to demystify ML by uncovering its underlying mathematics and showing how to apply ML methods to real-world financial data. In this book the authors
Featured with the balance of mathematical theorems and practical code examples of ML, this book will help you acquire an in-depth understanding of ML algorithms as well as hands-on experience. After reading An Introduction to Machine Learning in Quantitative Finance, ML tools will not be a black box to you anymore, and you will feel confident in successfully applying what you have learnt to empirical financial data!
"Sinopsis" puede pertenecer a otra edición de este libro.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
In today's world, we are increasingly exposed to the words "machine learning" (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation. Over the past few years, ML has gradually permeated the financial sector, reshaping the landscape of quantitative finance as we know it.
An Introduction to Machine Learning in Quantitative Finance aims to demystify ML by uncovering its underlying mathematics and showing how to apply ML methods to real-world financial data. In this book the authors
Provide a systematic and rigorous introduction to supervised, unsupervised and reinforcement learning by establishing essential definitions and theorems.
Dive into various types of neural networks, including artificial nets, convolutional nets, recurrent nets and recurrent reinforcement learning.
Summarize key contents of each section in the tables as a cheat sheet.
Include ample examples of financial applications.
Showcase how to tackle an exemplar ML project on financial data end-to-end.
Supplement Python codes of all the methods/examples in a GitHub repository.
Featured with the balance of mathematical theorems and practical code examples of ML, this book will help you acquire an in-depth understanding of ML algorithms as well as hands-on experience. After reading An Introduction to Machine Learning in Quantitative Finance, ML tools will not be a black box to you anymore, and you will feel confident in successfully applying what you have learnt to empirical financial data!
The Python codes contained within An Introduction to Machine Learning in Quantitative Finance have been made publicly available on the author's GitHub: https: //github.com/deepintomlf/mlfbook.git
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,58 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 0,91 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: CW-9781786349361
Cantidad disponible: 15 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: CW-9781786349361
Cantidad disponible: 15 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781786349361
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 42293012-n
Cantidad disponible: 18 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Nº de ref. del artículo: C9781786349361
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781786349361_new
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 526. Nº de ref. del artículo: B9781786349361
Cantidad disponible: 17 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 42293012-n
Cantidad disponible: 18 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 238 pages. 9.50x6.50x0.75 inches. In Stock. Nº de ref. del artículo: x-1786349361
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. In today s world, we are increasingly exposed to the words machine learning (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation.KlappentextrnrnIn today s wor. Nº de ref. del artículo: 401761149
Cantidad disponible: Más de 20 disponibles