Artículos relacionados a Deep Learning for Autonomous Vehicle Control: Algorithms,...

Deep Learning for Autonomous Vehicle Control: Algorithms, State-of-the-Art, and Future Prospects (Synthesis Lectures on Advances in Automotive Technology) - Tapa dura

 
9781681736167: Deep Learning for Autonomous Vehicle Control: Algorithms, State-of-the-Art, and Future Prospects (Synthesis Lectures on Advances in Automotive Technology)

Sinopsis

The next generation of autonomous vehicles will provide major improvements in traffic flow, fuel efficiency, and vehicle safety.

Several challenges currently prevent the deployment of autonomous vehicles, one aspect of which is robust and adaptable vehicle control. Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalizing previously learned rules to new scenarios. For these reasons, the use of deep neural networks for vehicle control has gained significant interest.

In this book, we introduce relevant deep learning techniques, discuss recent algorithms applied to autonomous vehicle control, identify strengths and limitations of available methods, discuss research challenges in the field, and provide insights into the future trends in this rapidly evolving field.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Sampo Kuutti received his MEng degree in mechanical engineering in 2017 from University of Surrey, Guildford, U.K., where he is currently pursuing a Ph.D. in automotive engineering with the Connected Autonomous Vehicles Lab within the Centre for Automotive Engineering. His research interests include deep learning applied to autonomous vehicles, functional safety validation, and safety and interpretability in machine learning systems.

Saber Fallah is a Senior Lecturer (Associate Professor) in Vehicle and Mechatronic Systems at the University of Surrey and the Director of Connected Autonomous Vehicle Lab (CAVLAB) within the Centre for Automotive Engineering, where he leads several research activities funded by the UK and European governments (e.g., EPSRC, Innovate UK, H2020) in collaboration with major companies active in autonomous vehicle technologies. His research interests include reinforced deep learning, advanced control, optimization, and estimation and their applications to connected autonomous vehicles.

Richard Bowden is Professor of computer vision and machine learning at the University of Surrey where he leads the Cognitive Vision Group within the Centre for Vision, Speech and Signal Processing. His research centers on the use of computer vision to locate, track, and understand humans. He is an associate editor for the journals Image and Vision Computing and IEEE TPAMI. In 2013 he was awarded a Royal Society Leverhulme Trust Senior Research Fellowship and is a fellow of the Higher Education Academy, a senior member of the IEEE, and a Fellow of the International Association of Pattern Recognition (IAPR).

Phil Barber was formerly Principal Technical Specialist in Capability Research at Jaguar Land Rover. For over 30 years in the automotive industry he has witnessed the introduction of computer controlled by-wire technology and been part of the debate over the safety issues involved in the implementation of real-time vehicle control.

Amir Khajepour is a professor of mechanical and mechatronics engineering at the University of Waterloo. He holds the Canada Research Chair in Mechatronic Vehicle Systems, and NSERC/General Motors Industrial Research program that applies his expertise in several key multidisciplinary areas including system modeling and control of dynamic systems. His research has resulted in many patents and technology transfers. He is the author of more than 400 journal and conference publications as well as several books. He is a Fellow of the Engineering Institute of Canada, the American Society of Mechanical Engineers, and the Canadian Society of Mechanical Engineering.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialMorgan & Claypool Publishers
  • Año de publicación2019
  • ISBN 10 1681736160
  • ISBN 13 9781681736167
  • EncuadernaciónTapa dura
  • IdiomaInglés
  • Número de páginas82
  • Contacto del fabricanteno disponible

Comprar usado

Condición: Excelente
Zustand: Sehr gut | Seiten: 80...
Ver este artículo

EUR 14,90 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781681736075: Deep Learning for Autonomous Vehicle Control: Algorithms, State-of-the-Art, and Future Prospects

Edición Destacada

ISBN 10:  1681736071 ISBN 13:  9781681736075
Editorial: Morgan & Claypool Publishers, 2019
Tapa blanda

Resultados de la búsqueda para Deep Learning for Autonomous Vehicle Control: Algorithms,...

Imagen de archivo

Sampo Kuutti, Saber Fallah, Richard Bowden
Publicado por MORGAN & CLAYPOOL, 2019
ISBN 10: 1681736160 ISBN 13: 9781681736167
Antiguo o usado Tapa dura

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Sehr gut. Zustand: Sehr gut | Seiten: 80 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 35363650/2

Contactar al vendedor

Comprar usado

EUR 48,59
Convertir moneda
Gastos de envío: EUR 14,90
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kuutti, Sampo,Fallah, Saber,Bowden, Richard
Publicado por Morgan & Claypool Publishers, 2019
ISBN 10: 1681736160 ISBN 13: 9781681736167
Antiguo o usado Tapa dura

Librería: suffolkbooks, Center moriches, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

hardcover. Condición: Very Good. Fast Shipping - Safe and Secure 7 days a week! Nº de ref. del artículo: 3TWOWA001LUD

Contactar al vendedor

Comprar usado

EUR 15,02
Convertir moneda
Gastos de envío: EUR 65,07
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 3 disponibles

Añadir al carrito