The main result of this book is a proof of the contradictory nature of the Navier‒Stokes problem (NSP). It is proved that the NSP is physically wrong, and the solution to the NSP does not exist on ℝ+ (except for the case when the initial velocity and the exterior force are both equal to zero; in this case, the solution 𝑣(𝑥, 𝑡) to the NSP exists for all 𝑡 ≥ 0 and 𝑣(𝑥, 𝑡) = 0).
It is shown that if the initial data 𝑣0(𝑥) ≢ 0, 𝑓(𝑥,𝑡) = 0 and the solution to the NSP exists for all 𝑡 ϵ ℝ+, then 𝑣0(𝑥) := 𝑣(𝑥, 0) = 0.
This Paradox proves that the NSP is physically incorrect and mathematically unsolvable, in general. Uniqueness of the solution to the NSP in the space 𝑊21(ℝ3) × C(ℝ+) is proved, 𝑊21(ℝ3) is the Sobolev space, ℝ+ = [0, ∞).
Theory of integral equations and inequalities with hyper-singular kernels is developed. The NSP is reduced to an integral inequality with a hyper-singular kernel.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 64,00 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: suffolkbooks, Center moriches, NY, Estados Unidos de America
hardcover. Condición: Very Good. Fast Shipping - Safe and Secure 7 days a week! Nº de ref. del artículo: 3TWOWA001OTF
Cantidad disponible: 1 disponibles