Discover one-of-a-kind AI strategies never before seen outside of academic papers! Learn how the principles of evolutionary computation overcome deep learning's common pitfalls and deliver adaptable model upgrades without constant manual adjustment.
In Evolutionary Deep Learning you will learn how to:
"Sinopsis" puede pertenecer a otra edición de este libro.
Micheal Lanham is a proven software and tech innovator with over 20 years of experience. He has developed a broad range of software applications in areas such as games, graphics, web, desktop, engineering, artificial intelligence, GIS, and machine learning applications for a variety of industries. At the turn of the millennium, Micheal began working with neural networks and evolutionary algorithms in game development.
In Evolutionary Deep Learning you'll master a toolbox of EC techniques that can be applied to any stage of the deep learning pipeline--from data collection, to hyperparameter tuning, and even optimizing network architecture. Hands-on examples demonstrate genetic algorithms and other EC approaches in action, and apply evolutionary deep learning to network topology, criterion loss and rewards, generative modeling, and reinforcement learning. Google Colab notebooks make it easy to experiment and play around with each exciting example. By the time you've finished reading, you'll be ready to build deep learning models as self-sufficient systems you can efficiently adapt to changing requirements.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,09 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 5,43 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 218. Nº de ref. del artículo: B9781617299520
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: PB-9781617299520
Cantidad disponible: 7 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: PB-9781617299520
Cantidad disponible: 7 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9781617299520
Cantidad disponible: 2 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. Discover one-of-a-kind AI strategies never before seen outside of academic papers! Learn how the principles of evolutionary computation overcome deep learning's common pitfalls and deliver adaptable model upgrades without constant manual adjustment. In Evolutionary Deep Learning you will learn how to: Solve complex design and analysis problems with evolutionary computationTune deep learning hyperparameters with evolutionary computation (EC), genetic algorithms, and particle swarm optimizationUse unsupervised learning with a deep learning autoencoder to regenerate sample dataUnderstand the basics of reinforcement learning and the Q Learning equationApply Q Learning to deep learning to produce deep reinforcement learningOptimize the loss function and network architecture of unsupervised autoencodersMake an evolutionary agent that can play an OpenAI Gym game Evolutionary Deep Learning is a guide to improving your deep learning models with AutoML enhancements based on the principles of biological evolution. This exciting new approach utilizes lesser-known AI approaches to boost performance without hours of data annotation or model hyperparameter tuning. about the technology Evolutionary deep learning merges the biology-simulating practices of evolutionary computation (EC) with the neural networks of deep learning. This unique approach can automate entire DL systems and help uncover new strategies and architectures. It gives new and aspiring AI engineers a set of optimization tools that can reliably improve output without demanding an endless churn of new data. about the reader For data scientists who know Python. Nº de ref. del artículo: LU-9781617299520
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 44874285-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44874285
Cantidad disponible: Más de 20 disponibles
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-31696
Cantidad disponible: 5 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Discover one-of-a-kind AI strategies never before seen outside of academic papers! Learn how the principles of evolutionary computation overcome deep learning's common pitfalls and deliver adaptable model upgrades without constant manual adjustment. In Evolutionary Deep Learning you will learn how to: Solve complex design and analysis problems with evolutionary computationTune deep learning hyperparameters with evolutionary computation (EC), genetic algorithms, and particle swarm optimizationUse unsupervised learning with a deep learning autoencoder to regenerate sample dataUnderstand the basics of reinforcement learning and the Q Learning equationApply Q Learning to deep learning to produce deep reinforcement learningOptimize the loss function and network architecture of unsupervised autoencodersMake an evolutionary agent that can play an OpenAI Gym game Evolutionary Deep Learning is a guide to improving your deep learning models with AutoML enhancements based on the principles of biological evolution. This exciting new approach utilizes lesser-known AI approaches to boost performance without hours of data annotation or model hyperparameter tuning. about the technology Evolutionary deep learning merges the biology-simulating practices of evolutionary computation (EC) with the neural networks of deep learning. This unique approach can automate entire DL systems and help uncover new strategies and architectures. It gives new and aspiring AI engineers a set of optimization tools that can reliably improve output without demanding an endless churn of new data. about the reader For data scientists who know Python. Nº de ref. del artículo: LU-9781617299520
Cantidad disponible: 10 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781617299520_new
Cantidad disponible: 2 disponibles