Many machine learning problems are too complex to be resolved by a single model or algorithm. Ensemble machine learning trains a group of diverse machine learning models to work together to solve a problem. By aggregating their output, these ensemble models can flexibly deliver rich and accurate results. Ensemble Methods for Machine Learning is a guide to ensemble methods with proven records in data science competitions and real world applications. Learning from hands-on case studies, you'll develop an under-the-hood understanding of foundational ensemble learning algorithms to deliver accurate, performant models.
About the Technology Ensemble machine learning lets you make robust predictions without needing the huge datasets and processing power demanded by deep learning. It sets multiple models to work on solving a problem, combining their results for better performance than a single model working alone. This "wisdom of crowds" approach distils information from several models into a set of highly accurate results.
"Sinopsis" puede pertenecer a otra edición de este libro.
Gautam Kunapuli has over 15 years of experience in academia and the machine learning industry. He has developed several novel algorithms for diverse application domains including social network analysis, text and natural language processing, behaviour mining, educational data mining and biomedical applications. He has also published papers exploring ensemble methods in relational domains and with imbalanced data.
In Ensemble Methods for Machine Learning you'll learn to implement the most important ensemble machine learning methods from scratch. Each chapter contains a new case study, taking you hands-on with a fully functioning ensemble method for medical diagnosis, sentiment analysis, handwriting classification, and more. There's no complex math or theory--each method is taught in a practical and visuals-first manner. Best of all, all code is provided in Jupyter notebooks for your easy experimentation! By the time you're done, you'll know the benefits, limitations, and practical methods of applying ensemble machine learning to real-world data, and be ready to build more explainable ML systems.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
Paperback. Condición: As New. It's a preowned item in almost perfect condition. It has no visible cosmetic imperfections. May come without any shrink wrap; pages are clean and not marred by notes or folds of any kind. Nº de ref. del artículo: 1617297135-10-1
Cantidad disponible: 1 disponibles
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
Paperback. Condición: Very Good. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Nº de ref. del artículo: 1617297135-8-1
Cantidad disponible: 1 disponibles
Librería: Goodwill of Silicon Valley, SAN JOSE, CA, Estados Unidos de America
Condición: very_good. Supports Goodwill of Silicon Valley job training programs. The cover and pages are in very good condition! The cover and any other included accessories are also in very good condition showing some minor use. The spine is straight, there are no rips tears or creases on the cover or the pages. Nº de ref. del artículo: GWSVV.1617297135.VG
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 43994852
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 43994852-n
Cantidad disponible: Más de 20 disponibles
Librería: INDOO, Avenel, NJ, Estados Unidos de America
Condición: As New. Unread copy in mint condition. Nº de ref. del artículo: SS9781617297137
Cantidad disponible: Más de 20 disponibles
Librería: INDOO, Avenel, NJ, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 9781617297137
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: PB-9781617297137
Cantidad disponible: 15 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. Many machine learning problems are too complex to be resolved by a single model or algorithm. Ensemble machine learning trains a group of diverse machine learning models to work together to solve a problem. By aggregating their output, these ensemble models can flexibly deliver rich and accurate results. Ensemble Methods for Machine Learning is a guide to ensemble methods with proven records in data science competitions and real world applications. Learning from hands-on case studies, you'll develop an under-the-hood understanding of foundational ensemble learning algorithms to deliver accurate, performant models. About the Technology Ensemble machine learning lets you make robust predictions without needing the huge datasets and processing power demanded by deep learning. It sets multiple models to work on solving a problem, combining their results for better performance than a single model working alone. This "wisdom of crowds" approach distils information from several models into a set of highly accurate results. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781617297137
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 43994852-n
Cantidad disponible: Más de 20 disponibles