For almost fifty years, Richard M. Dudley has been extremely influential in the development of several areas of Probability. His work on Gaussian processes led to the understanding of the basic fact that their sample boundedness and continuity should be characterized in terms of proper measures of complexity of their parameter spaces equipped with the intrinsic covariance metric. His sufficient condition for sample continuity in terms of metric entropy is widely used and was proved by X. Fernique to be necessary for stationary Gaussian processes, whereas its more subtle versions (majorizing measures) were proved by M. Talagrand to be necessary in general.
Together with V. N. Vapnik and A. Y. Cervonenkis, R. M. Dudley is a founder of the modern theory of empirical processes in general spaces. His work on uniform central limit theorems (under bracketing entropy conditions and for Vapnik-Cervonenkis classes), greatly extends classical results that go back to A. N. Kolmogorov and M. D. Donsker, and became the starting point of a new line of research, continued in the work of Dudley and others, that developed empirical processes into one of the major tools in mathematical statistics and statistical learning theory.
As a consequence of Dudley's early work on weak convergence of probability measures on non-separable metric spaces, the Skorohod topology on the space of regulated right-continuous functions can be replaced, in the study of weak convergence of the empirical distribution function, by the supremum norm. In a further recent step Dudley replaces this norm by the stronger p-variation norms, which then allows replacing compact differentiability of many statistical functionals by Fréchet differentiability in the delta method.
Richard M. Dudley has also made important contributions to mathematical statistics, the theory of weak convergence, relativistic Markov processes, differentiability of nonlinear operators and several other areas ofmathematics.
Professor Dudley has been the adviser to thirty PhD's and is a Professor of Mathematics at the Massachusetts Institute of Technology.
"Sinopsis" puede pertenecer a otra edición de este libro.
For almost fifty years, Richard M. Dudley has been extremely influential in the development of several areas of Probability. His work on Gaussian processes led to the understanding of the basic fact that their sample boundedness and continuity should be characterized in terms of proper measures of complexity of their parameter spaces equipped with the intrinsic covariance metric. His sufficient condition for sample continuity in terms of metric entropy is widely used and was proved by X. Fernique to be necessary for stationary Gaussian processes, whereas its more subtle versions (majorizing measures) were proved by M. Talagrand to be necessary in general.
Together with V. N. Vapnik and A. Y. Cervonenkis, R. M. Dudley is a founder of the modern theory of empirical processes in general spaces. His work on uniform central limit theorems (under bracketing entropy conditions and for Vapnik-Cervonenkis classes), greatly extends classical results that go back to A. N. Kolmogorov and M. D. Donsker, and became the starting point of a new line of research, continued in the work of Dudley and others, that developed empirical processes into one of the major tools in mathematical statistics and statistical learning theory.
As a consequence of Dudley's early work on weak convergence of probability measures on non-separable metric spaces, the Skorohod topology on the space of regulated right-continuous functions can be replaced, in the study of weak convergence of the empirical distribution function, by the supremum norm. In a further recent step Dudley replaces this norm by the stronger p-variation norms, which then allows replacing compact differentiability of many statistical functionals by Fréchet differentiability in the delta method.
Richard M. Dudley has also made important contributions to mathematical statistics, the theory of weak convergence, relativistic Markov processes, differentiability of nonlinear operators and several other areas of mathematics.
Professor Dudley has been the adviser to thirty PhD's and is a Professor of Mathematics at the Massachusetts Institute of Technology.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 8,00 gastos de envío desde Italia a Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Brook Bookstore On Demand, Napoli, NA, Italia
Condición: new. Questo è un articolo print on demand. Nº de ref. del artículo: a48f78dd8eeff9c29ea9d52d296d2ba5
Cantidad disponible: Más de 20 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781493940554
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2716030186033
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781493940554_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -For almost fifty years, Richard M. Dudley has been extremely influential in the development of several areas of Probability. His work on Gaussian processes led to the understanding of the basic fact that their sample boundedness and continuity should be characterized in terms of proper measures of complexity of their parameter spaces equipped with the intrinsic covariance metric. His sufficient condition for sample continuity in terms of metric entropy is widely used and was proved by X. Fernique to be necessary for stationary Gaussian processes, whereas its more subtle versions (majorizing measures) were proved by M. Talagrand to be necessary in general. Together with V. N. Vapnik and A. Y. Cervonenkis, R. M. Dudley is a founder of the modern theory of empirical processes in general spaces. His work on uniform central limit theorems (under bracketing entropy conditions and for Vapnik-Cervonenkis classes), greatly extends classical results that go back to A. N. Kolmogorov and M. D. Donsker, and became the starting point of a new line of research, continued in the work of Dudley and others, that developed empirical processes into one of the major tools in mathematical statistics and statistical learning theory. As a consequence of Dudley's early work on weak convergence of probability measures on non-separable metric spaces, the Skorohod topology on the space of regulated right-continuous functions can be replaced, in the study of weak convergence of the empirical distribution function, by the supremum norm. In a further recent step Dudley replaces this norm by the stronger p-variation norms, which then allows replacing compact differentiability of many statistical functionals by Fréchet differentiability in the delta method.Richard M. Dudley has also made important contributions to mathematical statistics, the theory of weak convergence, relativistic Markov processes, differentiability of nonlinear operators and several other areas of mathematics. Professor Dudley has been the adviser to thirty PhD's and is a Professor of Mathematics at the Massachusetts Institute of Technology. 508 pp. Englisch. Nº de ref. del artículo: 9781493940554
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Includes his major journal publications plus commentaries in the papers by the editors. Includes a complete bibliographyElectronic version is freely available on SpringerLinkFor almost fifty years, Richard M. Dudley has been extremely influential in . Nº de ref. del artículo: 385696976
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. XXIV, 481 1 Edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26384559229
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -For almost fifty years, Richard M. Dudley has been extremely influential in the development of several areas of Probability. His work on Gaussian processes led to the understanding of the basic fact that their sample boundedness and continuity should be characterized in terms of proper measures of complexity of their parameter spaces equipped with the intrinsic covariance metric. His sufficient condition for sample continuity in terms of metric entropy is widely used and was proved by X. Fernique to be necessary for stationary Gaussian processes, whereas its more subtle versions (majorizing measures) were proved by M. Talagrand to be necessary in general.Together with V. N. Vapnik and A. Y. Cervonenkis, R. M. Dudley is a founder of the modern theory of empirical processes in general spaces. His work on uniform central limit theorems (under bracketing entropy conditions and for Vapnik-Cervonenkis classes), greatly extends classical results that go back to A. N. Kolmogorov and M. D. Donsker, and became the starting point of a new line of research, continued in the work of Dudley and others, that developed empirical processes into one of the major tools in mathematical statistics and statistical learning theory.As a consequence of Dudley's early work on weak convergence of probability measures on non-separable metric spaces, the Skorohod topology on the space of regulated right-continuous functions can be replaced, in the study of weak convergence of the empirical distribution function, by the supremum norm. In a further recent step Dudley replaces this norm by the stronger p-variation norms, which then allows replacing compact differentiability of many statistical functionals by Fréchet differentiability in the delta method.Richard M. Dudley has also made important contributions to mathematical statistics, the theory of weak convergence, relativistic Markov processes, differentiability of nonlinear operators and several other areas ofmathematics.Professor Dudley has been the adviser to thirty PhD's and is a Professor of Mathematics at the Massachusetts Institute of Technology.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 508 pp. Englisch. Nº de ref. del artículo: 9781493940554
Cantidad disponible: 2 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. XXIV, 481. Nº de ref. del artículo: 379344802
Cantidad disponible: 4 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - For almost fifty years, Richard M. Dudley has been extremely influential in the development of several areas of Probability. His work on Gaussian processes led to the understanding of the basic fact that their sample boundedness and continuity should be characterized in terms of proper measures of complexity of their parameter spaces equipped with the intrinsic covariance metric. His sufficient condition for sample continuity in terms of metric entropy is widely used and was proved by X. Fernique to be necessary for stationary Gaussian processes, whereas its more subtle versions (majorizing measures) were proved by M. Talagrand to be necessary in general. Together with V. N. Vapnik and A. Y. Cervonenkis, R. M. Dudley is a founder of the modern theory of empirical processes in general spaces. His work on uniform central limit theorems (under bracketing entropy conditions and for Vapnik-Cervonenkis classes), greatly extends classical results that go back to A. N. Kolmogorov and M. D. Donsker, and became the starting point of a new line of research, continued in the work of Dudley and others, that developed empirical processes into one of the major tools in mathematical statistics and statistical learning theory. As a consequence of Dudley's early work on weak convergence of probability measures on non-separable metric spaces, the Skorohod topology on the space of regulated right-continuous functions can be replaced, in the study of weak convergence of the empirical distribution function, by the supremum norm. In a further recent step Dudley replaces this norm by the stronger p-variation norms, which then allows replacing compact differentiability of many statistical functionals by Fréchet differentiability in the delta method.Richard M. Dudley has also made important contributions to mathematical statistics, the theory of weak convergence, relativistic Markov processes, differentiability of nonlinear operators and several other areas ofmathematics. Professor Dudley has been the adviser to thirty PhD's and is a Professor of Mathematics at the Massachusetts Institute of Technology. Nº de ref. del artículo: 9781493940554
Cantidad disponible: 1 disponibles