Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size--small enough to run on a microcontroller. With this practical book you'll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. As of early 2022, the supplemental code files are available at https: //oreil.ly/XuIQ4.
Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary.
"Sinopsis" puede pertenecer a otra edición de este libro.
Pete Warden is technical lead for mobile and embedded TensorFlow. He was CTO and founder of Jetpac, which was acquired by Google in 2014, and previously worked at Apple. He was a founding member of the TensorFlow team, and blogs about practical deep learning at https: //petewarden.com.
Daniel Situnayake leads developer advocacy for TensorFlow Lite at Google. He co-founded Tiny Farms, the first US company using automation to produce insect protein at industrial scale. He began his career lecturing in automatic identification and data capture at Birmingham City University.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 21,38 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 4,60 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Bookmans, Tucson, AZ, Estados Unidos de America
paperback. Condición: Good. . Satisfaction 100% guaranteed. Nº de ref. del artículo: mon0002642661
Cantidad disponible: 1 disponibles
Librería: WorldofBooks, Goring-By-Sea, WS, Reino Unido
Paperback. Condición: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Nº de ref. del artículo: GOR010454856
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781492052043
Cantidad disponible: 15 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781492052043
Cantidad disponible: 10 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9781492052043
Cantidad disponible: 2 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Tinyml: Machine Learning with Tensorflow Lite on Arduino and Ultra-Low-Power Microcontrollers 1.75. Book. Nº de ref. del artículo: BBS-9781492052043
Cantidad disponible: 5 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781492052043
Cantidad disponible: Más de 20 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. 2020. Paperback. . . . . . Nº de ref. del artículo: V9781492052043
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781492052043_new
Cantidad disponible: 18 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size--small enough to run on a microcontroller. With this practical book you'll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. As of early 2022, the supplemental code files are available. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google's toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size. Nº de ref. del artículo: LU-9781492052043
Cantidad disponible: Más de 20 disponibles