Data Science is booming thanks to R and Python, but Java brings the robustness, convenience, and ability to scale critical to today's data science applications. With this practical book, Java software engineers looking to add data science skills will take a logical journey through the data science pipeline. Author Michael Brzustowicz explains the basic math theory behind each step of the data science process, as well as how to apply these concepts with Java.
You'll learn the critical roles that data IO, linear algebra, statistics, data operations, learning and prediction, and Hadoop MapReduce play in the process. Throughout this book, you'll find code examples you can use in your applications.
"Sinopsis" puede pertenecer a otra edición de este libro.
Michael Brzustowicz is a physicist turned data scientist. After a PhD from Indiana University, Michael spent his post doctoral years at Stanford University where he shot high powered Xrays at tiny molecules. Jumping ship from academia, he worked at many startups (including his own) and has been pioneering big data techniques all the way. Michael specializes in building distributed data systems and extracting knowledge from massive data. He spends most of his time writing customized, multithreaded code for statistical modeling and machine learning approaches to everyday big data problems. Michael now teaches Big Data, parttime, at the University of San Francisco.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,24 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 3,99 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781491934111
Cantidad disponible: 2 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9781491934111
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781491934111_new
Cantidad disponible: 3 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. . 2017. 1st Edition. Paperback. . . . . Nº de ref. del artículo: V9781491934111
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback. Condición: New. New copy - Usually dispatched within 4 working days. 405. Nº de ref. del artículo: B9781491934111
Cantidad disponible: 2 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. Data Science is booming thanks to R and Python, but Java brings the robustness, convenience, and ability to scale critical to today's data science applications. With this practical book, Java software engineers looking to add data science skills will take a logical journey through the data science pipeline. Author Michael Brzustowicz explains the basic math theory behind each step of the data science process, as well as how to apply these concepts with Java.You'll learn the critical roles that data IO, linear algebra, statistics, data operations, learning and prediction, and Hadoop MapReduce play in the process. Throughout this book, you'll find code examples you can use in your applications.Examine methods for obtaining, cleaning, and arranging data into its purest formUnderstand the matrix structure that your data should takeLearn basic concepts for testing the origin and validity of dataTransform your data into stable and usable numerical valuesUnderstand supervised and unsupervised learning algorithms, and methods for evaluating their successGet up and running with MapReduce, using customized components suitable for data science algorithms. Nº de ref. del artículo: LU-9781491934111
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 24688464-n
Cantidad disponible: 1 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. Data Science is booming thanks to R and Python, but Java brings the robustness, convenience, and ability to scale critical to today's data science applications. With this practical book, Java software engineers looking to add data science skills will take a logical journey through the data science pipeline. Author Michael Brzustowicz explains the basic math theory behind each step of the data science process, as well as how to apply these concepts with Java.You'll learn the critical roles that data IO, linear algebra, statistics, data operations, learning and prediction, and Hadoop MapReduce play in the process. Throughout this book, you'll find code examples you can use in your applications.Examine methods for obtaining, cleaning, and arranging data into its purest formUnderstand the matrix structure that your data should takeLearn basic concepts for testing the origin and validity of dataTransform your data into stable and usable numerical valuesUnderstand supervised and unsupervised learning algorithms, and methods for evaluating their successGet up and running with MapReduce, using customized components suitable for data science algorithms. Nº de ref. del artículo: LU-9781491934111
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 24688464-n
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 24688464
Cantidad disponible: 1 disponibles