"Sinopsis" puede pertenecer a otra edición de este libro.
Pradeepta Mishra is the Director of AI, Fosfor at L&T Infotech (LTI), leading a large group of Data Scientists, computational linguistics experts, Machine Learning and Deep Learning experts in building the next-generation product, ‘Leni,’ the world’s first virtual data scientist. He has expertise across core branches of Artificial Intelligence including Autonomous ML and Deep Learning pipelines, ML Ops, Image Processing, Audio Processing, Natural Language Processing (NLP), Natural Language Generation (NLG), design and implementation of expert systems, and personal digital assistants. In 2019 and 2020, he was named one of "India's Top "40Under40DataScientists" by Analytics India Magazine. Two of his books are translated into Chinese and Spanish based on popular demand.
He delivered a keynote session at the Global Data Science conference 2018, USA. He has delivered a TEDx talk on "Can Machines Think?", available on the official TEDx YouTube channel. He has mentored more than 2000 data scientists globally. He has delivered 200+ tech talks on data science, ML, DL, NLP, and AI in various Universities, meetups, technical institutions, and community-arranged forums. He is a visiting faculty member to more than 10 universities, where he teaches deep learning and machine learning to professionals, and mentors them in pursuing a rewarding career in Artificial Intelligence."Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,17 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoGRATIS gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-209611
Cantidad disponible: 2 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 2 working days. 209. Nº de ref. del artículo: B9781484289242
Cantidad disponible: 1 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Pytorch Recipes: A Problem-Solution Approach to Build, Train and Deploy Neural Network Models 1.12. Book. Nº de ref. del artículo: BBS-9781484289242
Cantidad disponible: 5 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781484289242
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Nº de ref. del artículo: C9781484289242
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 45291127-n
Cantidad disponible: 4 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. 2nd ed. Learn how to use PyTorch to build neural network models using code snippets updated for this second edition. This book includes new chapters covering topics such as distributed PyTorch modeling, deploying PyTorch models in production, and developments around PyTorch with updated code.You'll start by learning how to use tensors to develop and fine-tune neural network models and implement deep learning models such as LSTMs, and RNNs. Next, you'll explore probability distribution concepts using PyTorch, as well as supervised and unsupervised algorithms with PyTorch. This is followed by a deep dive on building models with convolutional neural networks, deep neural networks, and recurrent neural networks using PyTorch. This new edition covers also topics such as Scorch, a compatible module equivalent to the Scikit machine learning library, model quantization to reduce parameter size, and preparing a model for deployment within a production system. Distributed parallel processing for balancing PyTorch workloads, using PyTorch for image processing, audio analysis, and model interpretation are also covered in detail. Each chapter includes recipe code snippets to perform specific activities.By the end of this book, you will be able to confidently build neural network models using PyTorch.What You Will LearnUtilize new code snippets and models to train machine learning models using PyTorchTrain deep learning models with fewer and smarter implementationsExplore the PyTorch framework for model explainability and to bring transparency to model interpretationBuild, train, and deploy neural network models designed to scale with PyTorchUnderstand best practices for evaluating and fine-tuning models using PyTorchUse advanced torch features in training deep neural networksExplore various neural network models using PyTorchDiscover functions compatible with sci-kit learn compatible modelsPerform distributed PyTorch training and executionWho This Book Is ForMachine learning engineers, data scientists and Python programmers and software developers interested in learning the PyTorch framework. Nº de ref. del artículo: LU-9781484289242
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45291127
Cantidad disponible: 4 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. 2nd ed. Learn how to use PyTorch to build neural network models using code snippets updated for this second edition. This book includes new chapters covering topics such as distributed PyTorch modeling, deploying PyTorch models in production, and developments around PyTorch with updated code.You'll start by learning how to use tensors to develop and fine-tune neural network models and implement deep learning models such as LSTMs, and RNNs. Next, you'll explore probability distribution concepts using PyTorch, as well as supervised and unsupervised algorithms with PyTorch. This is followed by a deep dive on building models with convolutional neural networks, deep neural networks, and recurrent neural networks using PyTorch. This new edition covers also topics such as Scorch, a compatible module equivalent to the Scikit machine learning library, model quantization to reduce parameter size, and preparing a model for deployment within a production system. Distributed parallel processing for balancing PyTorch workloads, using PyTorch for image processing, audio analysis, and model interpretation are also covered in detail. Each chapter includes recipe code snippets to perform specific activities.By the end of this book, you will be able to confidently build neural network models using PyTorch.What You Will LearnUtilize new code snippets and models to train machine learning models using PyTorchTrain deep learning models with fewer and smarter implementationsExplore the PyTorch framework for model explainability and to bring transparency to model interpretationBuild, train, and deploy neural network models designed to scale with PyTorchUnderstand best practices for evaluating and fine-tuning models using PyTorchUse advanced torch features in training deep neural networksExplore various neural network models using PyTorchDiscover functions compatible with sci-kit learn compatible modelsPerform distributed PyTorch training and executionWho This Book Is ForMachine learning engineers, data scientists and Python programmers and software developers interested in learning the PyTorch framework. Nº de ref. del artículo: LU-9781484289242
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 45291127-n
Cantidad disponible: Más de 20 disponibles