Get hands-on knowledge of how BERT (Bidirectional Encoder Representations from Transformers) can be used to develop question answering (QA) systems by using natural language processing (NLP) and deep learning.
The book begins with an overview of the technology landscape behind BERT. It takes you through the basics of NLP, including natural language understanding with tokenization, stemming, and lemmatization, and bag of words. Next, you'll look at neural networks for NLP starting with its variants such as recurrent neural networks, encoders and decoders, bi-directional encoders and decoders, and transformer models. Along the way, you'll cover word embedding and their types along with the basics of BERT.
After this solid foundation, you'll be ready to take a deep dive into BERT algorithms such as masked language models and next sentence prediction. You'll see different BERT variations followed by a hands-on example of a question answering system.
Hands-on Question Answering Systems with BERT is a good starting point for developers and data scientists who want to develop and design NLP systems using BERT. It provides step-by-step guidance for using BERT.
What You Will Learn
Who This Book Is For
AI and machine learning developers and natural language processing developers.
"Sinopsis" puede pertenecer a otra edición de este libro.
Navin is the chief architect for HCL DryICE Autonomics. He is an innovator, thought leader, author, and consultant in the areas of AI, machine learning, cloud computing, big data analytics, and software product development. He is responsible for IP development and service delivery in the areas of AI and machine learning, automation, AIOPS, public cloud GCP, AWS, and Microsoft Azure. Navin has authored 15+ books in the areas of cloud computing , cognitive virtual agents, IBM Watson, GCP, containers, and microservices.
Amit Agrawal is a senior data scientist and researcher delivering solutions in the fields of AI and machine learning. He is responsible for designing end-to-end solutions and architecture for enterprise products. He has also authored and reviewed books in the area of cognitive virtual assistants.Get hands-on knowledge of how BERT (Bidirectional Encoder Representations from Transformers) can be used to develop question answering (QA) systems by using natural language processing (NLP) and deep learning.
The book begins with an overview of the technology landscape behind BERT. It takes you through the basics of NLP, including natural language understanding with tokenization, stemming, and lemmatization, and bag of words. Next, you ll look at neural networks for NLP starting with its variants such as recurrent neural networks, encoders and decoders, bi-directional encoders and decoders, and transformer models. Along the way, you ll cover word embedding and their types along with the basics of BERT.
After this solid foundation, you ll be ready to take a deep dive into BERT algorithms such as masked language models and next sentence prediction. You ll see different BERT variations followed by a hands-on example of a question answering system.
Hands-on Question Answering Systems with BERT is a good starting point for developers and data scientists who want to develop and design NLP systems using BERT. It provides step-by-step guidance for using BERT.
You will:
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 10,85 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Hands-On Question Answering Systems with Bert: Applications in Neural Networks and Natural Language Processing 0.64. Book. Nº de ref. del artículo: BBS-9781484266632
Cantidad disponible: 5 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 184 pages. 9.50x6.25x0.50 inches. In Stock. Nº de ref. del artículo: x-1484266633
Cantidad disponible: 2 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Get hands-on knowledge of how BERT (Bidirectional Encoder Representations from Transformers) can be used to develop question answering (QA) systems by using natural language processing (NLP) and deep learning.The book begins with an overview of the technology landscape behind BERT. It takes you through the basics of NLP, including natural language understanding with tokenization, stemming, and lemmatization, and bag of words. Next, you'll look at neural networks for NLP starting with its variants such as recurrent neural networks, encoders and decoders, bi-directional encoders and decoders, and transformer models. Along the way, you'll cover word embedding and their types along with the basics of BERT. After this solid foundation, you'll be ready to take a deep dive into BERT algorithms such as masked language models and next sentence prediction. You'll see different BERT variations followed by a hands-on example of a question answering system. Hands-on Question Answering Systems with BERT is a good starting point for developers and data scientists who want to develop and design NLP systems using BERT. It provides step-by-step guidance for using BERT.What You Will Learn Examine the fundamentals of word embeddings Apply neural networks and BERT for various NLP tasks Develop a question-answering system from scratch Train question-answering systems for your own data Who This Book Is ForAI and machine learning developers and natural language processing developers. 200 pp. Englisch. Nº de ref. del artículo: 9781484266632
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781484266632_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Integrates question answering systems with document repositories from different sourcesContains an in-depth explanation of the technology behind BERTTakes a step-by-step approach to building ques. Nº de ref. del artículo: 417539261
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Get hands-on knowledge of how BERT (Bidirectional Encoder Representations from Transformers) can be used to develop question answering (QA) systems by using natural language processing (NLP) and deep learning.The book begins with an overview of the technology landscape behind BERT. It takes you through the basics of NLP, including natural language understanding with tokenization, stemming, and lemmatization, and bag of words. Next, you'll look at neural networks for NLP starting with its variants such as recurrent neural networks, encoders and decoders, bi-directional encoders and decoders, and transformer models. Along the way, you'll cover word embedding and their types along with the basics of BERT. After this solid foundation, you'll be ready to take a deep dive into BERT algorithms such as masked language models and next sentence prediction. You'll see different BERT variations followed by a hands-on example of a question answering system. Hands-on Question Answering Systems with BERT is a good starting point for developers and data scientists who want to develop and design NLP systems using BERT. It provides step-by-step guidance for using BERT.What You Will Learn Examine the fundamentals of word embeddings Apply neural networks and BERT for various NLP tasks Develop a question-answering system from scratch Train question-answering systems for your own data Who This Book Is ForAI and machine learning developers and natural language processing developers. Nº de ref. del artículo: 9781484266632
Cantidad disponible: 1 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9781484266632
Cantidad disponible: 10 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. 1st ed. edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26387786859
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 392861620
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Get hands-on knowledge of how BERT (Bidirectional Encoder Representations from Transformers) can be used to develop question answering (QA) systems by using natural language processing (NLP) and deep learning.The book begins with an overview of the technology landscape behind BERT. It takes you through the basics of NLP, including natural language understanding with tokenization, stemming, and lemmatization, and bag of words. Next, yoüll look at neural networks for NLP starting with its variants such as recurrent neural networks, encoders and decoders, bi-directional encoders and decoders, and transformer models. Along the way, yoüll cover word embedding and their types along with the basics of BERT.After this solid foundation, yoüll be ready to take a deep dive into BERT algorithms such as masked language models and next sentence prediction. Yoüll see different BERT variations followed by a hands-on example of a question answering system.Hands-on Question Answering Systems with BERT is a good starting point for developers and data scientists who want to develop and design NLP systems using BERT. It provides step-by-step guidance for using BERT.What You Will LearnExamine the fundamentals of word embeddingsApply neural networks and BERT for various NLP tasksDevelop a question-answering system from scratchTrain question-answering systems for your own dataWho This Book Is ForAI and machine learning developers and natural language processing developers.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 200 pp. Englisch. Nº de ref. del artículo: 9781484266632
Cantidad disponible: 2 disponibles