Build and deploy machine learning and deep learning models in production with end-to-end examples.
"Sinopsis" puede pertenecer a otra edición de este libro.
Pramod Singh is Manager of Data Science at Bain & Company. Previously, he worked as Sr. Machine Learning Engineer at Walmart Labs and Data Science Manager at Publicis Sapient in India. He has spent over 10 years working in machine learning, deep learning, data engineering, algorithm design, and application development. He has authored three Apress books: Machine Learning with PySpark, Learn PySpark, and Learn TensorFlow 2.0. He is a regular speaker at major conferences such as O’Reilly’s Strata Data, GIDS, and other AI conferences. He is an active mentor and faculty in machine learning and AI at various educational institutes. He lives in Bangalore with his wife and four-year-old son. In his spare time, he enjoys playing guitar, coding, reading, and watching football.
Manager of Data Science at Bain & Company. He has over 11 years of experience in the data science field working with multiple product- and service-based organizations. He has been part of numerous ML and AI large-scale projects. He has published three books on large scale data processing and machine learning. He is a regular speaker at major AI conferences.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: Good. 2020. Paperback. Ex Libris with usual markings. Clean copy with some shelf wear, some sunning and nicks and tears to cover, inscribed by previous owner, otherwise a good copy. . . . . Books ship from the US and Ireland. Nº de ref. del artículo: KKD0015413
Cantidad disponible: 1 disponibles
Librería: Lakeside Books, Benton Harbor, MI, Estados Unidos de America
Condición: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Nº de ref. del artículo: OTF-9781484265451
Cantidad disponible: Más de 20 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: Good. 2020. Paperback. Ex Libris with usual markings. Clean copy with some shelf wear, some sunning and nicks and tears to cover, inscribed by previous owner, otherwise a good copy. . . . . Nº de ref. del artículo: KKD0015413
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2716030152583
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 150 pages. 9.00x6.00x0.50 inches. In Stock. Nº de ref. del artículo: x-1484265459
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781484265451_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9781484265451
Cantidad disponible: 10 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. 1st ed. edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26388935622
Cantidad disponible: 4 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Build and deploy machine learning and deep learning models in production with end-to-end examples.This book begins with a focus on the machine learning model deployment process and its related challenges. Next, it covers the process of building and deploying machine learning models using different web frameworks such as Flask and Streamlit. A chapter on Docker follows and covers how to package and containerize machine learning models. The book also illustrates how to build and train machine learning and deep learning models at scale using Kubernetes.The book is a good starting point for people who want to move to the next level of machine learning by taking pre-built models and deploying them into production. It also offers guidance to those who want to move beyond Jupyter not Elektronisches Buch to training models at scale on cloud environments. All the code presented in the book is available in the form of Python scripts for you to try the examples and extend them in interesting ways.What You Will LearnBuild, train, and deploy machine learning models at scale using KubernetesContainerize any kind of machine learning model and run it on any platform using DockerDeploy machine learning and deep learning models using Flask and Streamlit frameworksWho This Book Is ForData engineers, data scientists, analysts, and machine learning and deep learning engineers 164 pp. Englisch. Nº de ref. del artículo: 9781484265451
Cantidad disponible: 2 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 391712793
Cantidad disponible: 4 disponibles