Artículos relacionados a Understand, Manage, and Prevent Algorithmic Bias: A...

Understand, Manage, and Prevent Algorithmic Bias: A Guide for Business Users and Data Scientists - Tapa blanda

 
9781484248843: Understand, Manage, and Prevent Algorithmic Bias: A Guide for Business Users and Data Scientists

Sinopsis

Are algorithms friend or foe?

The human mind is evolutionarily designed to take shortcuts in order to survive. We jump to conclusions because our brains want to keep us safe. A majority of our biases work in our favor, such as when we feel a car speeding in our direction is dangerous and we instantly move, or when we decide not take a bite of food that appears to have gone bad. However, inherent bias negatively affects work environments and the decision-making surrounding our communities. While the creation of algorithms and machine learning attempts to eliminate bias, they are, after all, created by human beings, and thus are susceptible to what we call algorithmic bias.

In Understand, Manage, and Prevent Algorithmic Bias, author Tobias Baer helps you understand where algorithmic bias comes from, how to manage it as a business user or regulator, and how data science can prevent bias from entering statistical algorithms. Baer expertly addresses someof the 100+ varieties of natural bias such as confirmation bias, stability bias, pattern-recognition bias, and many others. Algorithmic bias mirrors—and originates in—these human tendencies. Baer dives into topics as diverse as anomaly detection, hybrid model structures, and self-improving machine learning.

While most writings on algorithmic bias focus on the dangers, the core of this positive, fun book points toward a path where bias is kept at bay and even eliminated. You’ll come away with managerial techniques to develop unbiased algorithms, the ability to detect bias more quickly, and knowledge to create unbiased data. Understand, Manage, and Prevent Algorithmic Bias is an innovative, timely, and important book that belongs on your shelf. Whether you are a seasoned business executive, a data scientist, or simply an enthusiast, now is a crucial time to be educated about the impact of algorithmic bias on society and take an active role in fighting bias.


What You'll Learn

  • Study the many sources of algorithmic bias, including cognitive biases in the real world, biased data, and statistical artifact
  • Understand the risks of algorithmic biases, how to detect them, and managerial techniques to prevent or manage them
  • Appreciate how machine learning both introduces new sources of algorithmic bias and can be a part of a solution
  • Be familiar with specific statistical techniques a data scientist can use to detect and overcome algorithmic bias


Who This Book is For

Business executives of companies using algorithms in daily operations; data scientists (from students to seasoned practitioners) developing algorithms; compliance officials concerned about algorithmic bias; politicians, journalists, and philosophers thinking about algorithmic bias in terms of its impact on society and possible regulatory responses;and consumers concerned about how they might be affected by algorithmic bias

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Tobias Baer is a data scientist, psychologist, and top management consultant with over 20 years of experience in risk analytics. Until June 2018, he was Master Expert and Partner at McKinsey & Co., Inc., where he built McKinsey's Risk Advanced Analytics Center of Competence in India in 2004, led the Credit Risk Advanced Analytics Service Line globally, and served clients in over 50 countries on topics such as the development of analytical decision models for credit underwriting, insurance pricing, and tax enforcement, as well as debiasing decisions. Tobias has been pursuing a research agenda around analytics and decision making both at McKinsey (e.g., on debiasing judgmental decisions and on leveraging machine learning to develop highly transparent predictive models) and at University of Cambridge, UK (e.g., the effect of mental fatigue on decision bias).

Tobias holds a PhD in finance from University of Frankfurt, an MPhil in psychology from University of Cambridge, an MA in economics from UWM, and has done  undergraduate studies in business administration and law at University of Giessen. He started publishing as a teenager, writing about programming tricks for the Commodore C64 home computer in a German software magazine, and now blogs regularly on his LinkedIn page.

De la contraportada

The human mind is evolutionarily designed to take shortcuts in order to survive. We jump to conclusions because our brains want to keep us safe. A majority of our biases work in our favor, such as when we feel a car speeding in our direction is dangerous and we instantly move, or when we decide not take a bite of food that appears to have gone bad. However, inherent bias negatively affects work environments and the decision-making surrounding our communities. While the creation of algorithms and machine learning attempts to eliminate bias, they are, after all, created by human beings, and thus are susceptible to what we call algorithmic bias.

In Understand, Manage, and Prevent Algorithmic Bias, author Tobias Baer helps you understand where algorithmic bias comes from, how to manage it as a business user or regulator, and how data science can prevent bias from entering statistical algorithms. Baer expertly addresses some of the 100+ varieties of natural bias such as confirmation bias, stability bias, pattern-recognition bias, and many others. Algorithmic bias mirrors—and originates in—these human tendencies.

While most writings on algorithmic bias focus on the dangers, the core of this positive, fun book points toward a path where bias is kept at bay and even eliminated. You’ll come away with managerial techniques to develop unbiased algorithms, the ability to detect bias more quickly, and knowledge to create unbiased data. Understand, Manage, and Prevent Algorithmic Bias is an innovative, timely, and important book that belongs on your shelf. Whether you are a seasoned business executive, a data scientist, or simply an enthusiast, now is a crucial time to be educated about the larger sociological impact of bias in the digital era.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Bueno
The book has been read, but is...
Ver este artículo

EUR 6,95 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

GRATIS gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781484275528: Understand Manage and Prevent Algorithmic Bias: A Guide for Business Users and Data Scientists

Edición Destacada

ISBN 10:  1484275527 ISBN 13:  9781484275528
Tapa blanda

Resultados de la búsqueda para Understand, Manage, and Prevent Algorithmic Bias: A...

Imagen de archivo

Baer, Tobias
Publicado por Apress, 2019
ISBN 10: 1484248848 ISBN 13: 9781484248843
Antiguo o usado Paperback

Librería: WorldofBooks, Goring-By-Sea, WS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Nº de ref. del artículo: GOR014180277

Contactar al vendedor

Comprar usado

EUR 13,12
Convertir moneda
Gastos de envío: EUR 6,95
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Edición internacional
Edición internacional

Baer
Publicado por Apress, 2019
ISBN 10: 1484248848 ISBN 13: 9781484248843
Nuevo Tapa blanda
Edición internacional

Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-210150

Contactar al vendedor

Comprar nuevo

EUR 26,58
Convertir moneda
Gastos de envío: GRATIS
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Baer, Tobias
Publicado por Apress, 2019
ISBN 10: 1484248848 ISBN 13: 9781484248843
Antiguo o usado Tapa blanda

Librería: -OnTimeBooks-, Phoenix, AZ, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: very_good. Gently read. May have name of previous ownership, or ex-library edition. Binding tight; spine straight and smooth, with no creasing; covers clean and crisp. Minimal signs of handling or shelving. 100% GUARANTEE! Shipped with delivery confirmation, if youâre not satisfied with purchase please return item for full refund. Ships USPS Media Mail. Nº de ref. del artículo: OTV.1484248848.VG

Contactar al vendedor

Comprar usado

EUR 16,74
Convertir moneda
Gastos de envío: EUR 10,30
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Baer, Tobias
Publicado por Apress 6/8/2019, 2019
ISBN 10: 1484248848 ISBN 13: 9781484248843
Nuevo Paperback or Softback

Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback or Softback. Condición: New. Understand, Manage, and Prevent Algorithmic Bias: A Guide for Business Users and Data Scientists 0.81. Book. Nº de ref. del artículo: BBS-9781484248843

Contactar al vendedor

Comprar nuevo

EUR 36,46
Convertir moneda
Gastos de envío: EUR 10,74
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen de archivo

Baer, Tobias
Publicado por Apress, 2019
ISBN 10: 1484248848 ISBN 13: 9781484248843
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9781484248843

Contactar al vendedor

Comprar nuevo

EUR 40,70
Convertir moneda
Gastos de envío: EUR 6,87
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Tobias Baer
Publicado por APress, US, 2019
ISBN 10: 1484248848 ISBN 13: 9781484248843
Nuevo Paperback

Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Are algorithms friend or foe?The human mind is evolutionarily designed to take shortcuts in order to survive. We jump to conclusions because our brains want to keep us safe. A majority of our biases work in our favor, such as when we feel a car speeding in our direction is dangerous and we instantly move, or when we decide not take a bite of food that appears to have gone bad. However, inherent bias negatively affects work environments and the decision-making surrounding our communities. While the creation of algorithms and machine learning attempts to eliminate bias, they are, after all, created by human beings, and thus are susceptible to what we call algorithmic bias.In Understand, Manage, and Prevent Algorithmic Bias, author Tobias Baer helps you understand where algorithmic bias comes from, how to manage it as a business user or regulator, and how data science can prevent bias from entering statistical algorithms. Baer expertly addresses someof the 100+ varieties of natural bias such as confirmation bias, stability bias, pattern-recognition bias, and many others. Algorithmic bias mirrors-and originates in-these human tendencies. Baer dives into topics as diverse as anomaly detection, hybrid model structures, and self-improving machine learning. While most writings on algorithmic bias focus on the dangers, the core of this positive, fun book points toward a path where bias is kept at bay and even eliminated. You'll come away with managerial techniques to develop unbiased algorithms, the ability to detect bias more quickly, and knowledge to create unbiased data. Understand, Manage, and Prevent Algorithmic Bias is an innovative, timely, and important book that belongs on your shelf. Whether you are a seasoned business executive, a data scientist, or simply an enthusiast, now is a crucial time to be educated about the impact of algorithmic bias on society and take an active role in fighting bias.What You'll LearnStudy the many sources of algorithmic bias, including cognitive biases in the real world, biased data, and statistical artifactUnderstand the risks of algorithmic biases, how to detect them, and managerial techniques to prevent or manage themAppreciate how machine learning both introduces new sources of algorithmic bias and can be a part of a solutionBe familiar with specific statistical techniques a data scientist can use to detect and overcome algorithmic biasWho This Book is ForBusiness executives of companies using algorithms in daily operations; data scientists (from students to seasoned practitioners) developing algorithms; compliance officials concerned about algorithmic bias; politicians, journalists, and philosophers thinking about algorithmic bias in terms of its impact on society and possible regulatory responses;and consumers concerned about how they might be affected by algorithmic bias. Nº de ref. del artículo: LU-9781484248843

Contactar al vendedor

Comprar nuevo

EUR 45,36
Convertir moneda
Gastos de envío: EUR 3,44
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Tobias Baer
Publicado por APress, US, 2019
ISBN 10: 1484248848 ISBN 13: 9781484248843
Nuevo Paperback

Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Are algorithms friend or foe?The human mind is evolutionarily designed to take shortcuts in order to survive. We jump to conclusions because our brains want to keep us safe. A majority of our biases work in our favor, such as when we feel a car speeding in our direction is dangerous and we instantly move, or when we decide not take a bite of food that appears to have gone bad. However, inherent bias negatively affects work environments and the decision-making surrounding our communities. While the creation of algorithms and machine learning attempts to eliminate bias, they are, after all, created by human beings, and thus are susceptible to what we call algorithmic bias.In Understand, Manage, and Prevent Algorithmic Bias, author Tobias Baer helps you understand where algorithmic bias comes from, how to manage it as a business user or regulator, and how data science can prevent bias from entering statistical algorithms. Baer expertly addresses someof the 100+ varieties of natural bias such as confirmation bias, stability bias, pattern-recognition bias, and many others. Algorithmic bias mirrors-and originates in-these human tendencies. Baer dives into topics as diverse as anomaly detection, hybrid model structures, and self-improving machine learning. While most writings on algorithmic bias focus on the dangers, the core of this positive, fun book points toward a path where bias is kept at bay and even eliminated. You'll come away with managerial techniques to develop unbiased algorithms, the ability to detect bias more quickly, and knowledge to create unbiased data. Understand, Manage, and Prevent Algorithmic Bias is an innovative, timely, and important book that belongs on your shelf. Whether you are a seasoned business executive, a data scientist, or simply an enthusiast, now is a crucial time to be educated about the impact of algorithmic bias on society and take an active role in fighting bias.What You'll LearnStudy the many sources of algorithmic bias, including cognitive biases in the real world, biased data, and statistical artifactUnderstand the risks of algorithmic biases, how to detect them, and managerial techniques to prevent or manage themAppreciate how machine learning both introduces new sources of algorithmic bias and can be a part of a solutionBe familiar with specific statistical techniques a data scientist can use to detect and overcome algorithmic biasWho This Book is ForBusiness executives of companies using algorithms in daily operations; data scientists (from students to seasoned practitioners) developing algorithms; compliance officials concerned about algorithmic bias; politicians, journalists, and philosophers thinking about algorithmic bias in terms of its impact on society and possible regulatory responses;and consumers concerned about how they might be affected by algorithmic bias. Nº de ref. del artículo: LU-9781484248843

Contactar al vendedor

Comprar nuevo

EUR 46,80
Convertir moneda
Gastos de envío: EUR 3,44
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Tobias Baer
Publicado por APress, US, 2019
ISBN 10: 1484248848 ISBN 13: 9781484248843
Nuevo Paperback

Librería: Rarewaves.com UK, London, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Are algorithms friend or foe?The human mind is evolutionarily designed to take shortcuts in order to survive. We jump to conclusions because our brains want to keep us safe. A majority of our biases work in our favor, such as when we feel a car speeding in our direction is dangerous and we instantly move, or when we decide not take a bite of food that appears to have gone bad. However, inherent bias negatively affects work environments and the decision-making surrounding our communities. While the creation of algorithms and machine learning attempts to eliminate bias, they are, after all, created by human beings, and thus are susceptible to what we call algorithmic bias.In Understand, Manage, and Prevent Algorithmic Bias, author Tobias Baer helps you understand where algorithmic bias comes from, how to manage it as a business user or regulator, and how data science can prevent bias from entering statistical algorithms. Baer expertly addresses someof the 100+ varieties of natural bias such as confirmation bias, stability bias, pattern-recognition bias, and many others. Algorithmic bias mirrors-and originates in-these human tendencies. Baer dives into topics as diverse as anomaly detection, hybrid model structures, and self-improving machine learning. While most writings on algorithmic bias focus on the dangers, the core of this positive, fun book points toward a path where bias is kept at bay and even eliminated. You'll come away with managerial techniques to develop unbiased algorithms, the ability to detect bias more quickly, and knowledge to create unbiased data. Understand, Manage, and Prevent Algorithmic Bias is an innovative, timely, and important book that belongs on your shelf. Whether you are a seasoned business executive, a data scientist, or simply an enthusiast, now is a crucial time to be educated about the impact of algorithmic bias on society and take an active role in fighting bias.What You'll LearnStudy the many sources of algorithmic bias, including cognitive biases in the real world, biased data, and statistical artifactUnderstand the risks of algorithmic biases, how to detect them, and managerial techniques to prevent or manage themAppreciate how machine learning both introduces new sources of algorithmic bias and can be a part of a solutionBe familiar with specific statistical techniques a data scientist can use to detect and overcome algorithmic biasWho This Book is ForBusiness executives of companies using algorithms in daily operations; data scientists (from students to seasoned practitioners) developing algorithms; compliance officials concerned about algorithmic bias; politicians, journalists, and philosophers thinking about algorithmic bias in terms of its impact on society and possible regulatory responses;and consumers concerned about how they might be affected by algorithmic bias. Nº de ref. del artículo: LU-9781484248843

Contactar al vendedor

Comprar nuevo

EUR 48,51
Convertir moneda
Gastos de envío: EUR 2,32
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Baer, Tobias
Publicado por Apress, 2019
ISBN 10: 1484248848 ISBN 13: 9781484248843
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 35508758-n

Contactar al vendedor

Comprar nuevo

EUR 34,12
Convertir moneda
Gastos de envío: EUR 17,17
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen del vendedor

Tobias Baer
Publicado por APress, US, 2019
ISBN 10: 1484248848 ISBN 13: 9781484248843
Nuevo Paperback

Librería: Rarewaves.com USA, London, LONDO, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Are algorithms friend or foe?The human mind is evolutionarily designed to take shortcuts in order to survive. We jump to conclusions because our brains want to keep us safe. A majority of our biases work in our favor, such as when we feel a car speeding in our direction is dangerous and we instantly move, or when we decide not take a bite of food that appears to have gone bad. However, inherent bias negatively affects work environments and the decision-making surrounding our communities. While the creation of algorithms and machine learning attempts to eliminate bias, they are, after all, created by human beings, and thus are susceptible to what we call algorithmic bias.In Understand, Manage, and Prevent Algorithmic Bias, author Tobias Baer helps you understand where algorithmic bias comes from, how to manage it as a business user or regulator, and how data science can prevent bias from entering statistical algorithms. Baer expertly addresses someof the 100+ varieties of natural bias such as confirmation bias, stability bias, pattern-recognition bias, and many others. Algorithmic bias mirrors-and originates in-these human tendencies. Baer dives into topics as diverse as anomaly detection, hybrid model structures, and self-improving machine learning. While most writings on algorithmic bias focus on the dangers, the core of this positive, fun book points toward a path where bias is kept at bay and even eliminated. You'll come away with managerial techniques to develop unbiased algorithms, the ability to detect bias more quickly, and knowledge to create unbiased data. Understand, Manage, and Prevent Algorithmic Bias is an innovative, timely, and important book that belongs on your shelf. Whether you are a seasoned business executive, a data scientist, or simply an enthusiast, now is a crucial time to be educated about the impact of algorithmic bias on society and take an active role in fighting bias.What You'll LearnStudy the many sources of algorithmic bias, including cognitive biases in the real world, biased data, and statistical artifactUnderstand the risks of algorithmic biases, how to detect them, and managerial techniques to prevent or manage themAppreciate how machine learning both introduces new sources of algorithmic bias and can be a part of a solutionBe familiar with specific statistical techniques a data scientist can use to detect and overcome algorithmic biasWho This Book is ForBusiness executives of companies using algorithms in daily operations; data scientists (from students to seasoned practitioners) developing algorithms; compliance officials concerned about algorithmic bias; politicians, journalists, and philosophers thinking about algorithmic bias in terms of its impact on society and possible regulatory responses;and consumers concerned about how they might be affected by algorithmic bias. Nº de ref. del artículo: LU-9781484248843

Contactar al vendedor

Comprar nuevo

EUR 52,11
Convertir moneda
Gastos de envío: EUR 2,32
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 16 copia(s) de este libro

Ver todos los resultados de su búsqueda