The so-called ""pinched disk'' model of the Mandelbrot set is due to A. Douady, J. H. Hubbard and W. P. Thurston. It can be described in the language of geodesic laminations. The combinatorial model is the quotient space of the unit disk under an equivalence relation that, loosely speaking, `""pinches""' the disk in the plane (whence the name of the model). The significance of the model lies in particular in the fact that this quotient is planar and therefore can be easily visualized. The conjecture that the Mandelbrot set is actually homeomorphic to this model is equivalent to the celebrated MLC conjecture stating that the Mandelbrot set is locally connected. For parameter spaces of higher degree polynomials no combinatorial model is known.
One possible reason may be that the higher degree analog of the MLC conjecture is known to be false. The authors investigate to which extent a geodesic lamination is determined by the location of its critical sets and when different choices of critical sets lead to essentially the same lamination. This yields models of various parameter spaces of laminations similar to the ``pinched disk'' model of the Mandelbrot set.
"Sinopsis" puede pertenecer a otra edición de este libro.
Alexander Blokh, University of Alabama at Birmingham, AL, USA.
Lex Oversteegen, University of Alabama at Birmingham, AL, USA.
Ross Ptacek, National Research University Higher School of Economics, Moscow, Russia.
Vladlen Timorin, National Research University Higher School of Economics, Moscow, Russia.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 2,00 gastos de envío desde Irlanda a España
Destinos, gastos y plazos de envíoLibrería: Antiquariat Bookfarm, Löbnitz, Alemania
Softcover. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-00075 9781470441760 Sprache: Englisch Gewicht in Gramm: 350. Nº de ref. del artículo: 2482574
Cantidad disponible: 1 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Nº de ref. del artículo: V9781470441760
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9781470441760
Cantidad disponible: 6 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. The so-called ""pinched disk'' model of the Mandelbrot set is due to A. Douady, J. H. Hubbard and W. P. Thurston. It can be described in the language of geodesic laminations. The combinatorial model is the quotient space of the unit disk under an equivalence relation that, loosely speaking, `""pinches""' the disk in the plane (whence the name of the model). The significance of the model lies in particular in the fact that this quotient is planar and therefore can be easily visualized. The conjecture that the Mandelbrot set is actually homeomorphic to this model is equivalent to the celebrated MLC conjecture stating that the Mandelbrot set is locally connected. For parameter spaces of higher degree polynomials no combinatorial model is known.One possible reason may be that the higher degree analog of the MLC conjecture is known to be false. The authors investigate to which extent a geodesic lamination is determined by the location of its critical sets and when different choices of critical sets lead to essentially the same lamination. This yields models of various parameter spaces of laminations similar to the ``pinched disk'' model of the Mandelbrot set. Nº de ref. del artículo: LU-9781470441760
Cantidad disponible: 3 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. The so-called ""pinched disk'' model of the Mandelbrot set is due to A. Douady, J. H. Hubbard and W. P. Thurston. It can be described in the language of geodesic laminations. The combinatorial model is the quotient space of the unit disk under an equivalence relation that, loosely speaking, `""pinches""' the disk in the plane (whence the name of the model). The significance of the model lies in particular in the fact that this quotient is planar and therefore can be easily visualized. The conjecture that the Mandelbrot set is actually homeomorphic to this model is equivalent to the celebrated MLC conjecture stating that the Mandelbrot set is locally connected. For parameter spaces of higher degree polynomials no combinatorial model is known.One possible reason may be that the higher degree analog of the MLC conjecture is known to be false. The authors investigate to which extent a geodesic lamination is determined by the location of its critical sets and when different choices of critical sets lead to essentially the same lamination. This yields models of various parameter spaces of laminations similar to the ``pinched disk'' model of the Mandelbrot set. Nº de ref. del artículo: LU-9781470441760
Cantidad disponible: 3 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 105 pages. 9.92x6.93x0.32 inches. In Stock. Nº de ref. del artículo: __1470441764
Cantidad disponible: 2 disponibles
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: V9781470441760
Cantidad disponible: 1 disponibles
Librería: Literary Cat Books, Machynlleth, Powys, WALES, Reino Unido
Original decorated wrappers. Condición: New. First Edition. Light shelfwear. ; Octavo; 105 pages. Nº de ref. del artículo: LCH46413
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 41453311-n
Cantidad disponible: 4 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 41453311-n
Cantidad disponible: 6 disponibles