Artículos relacionados a Machine Learning for Social and Behavioral Research...

Machine Learning for Social and Behavioral Research (The Methodology in the Social Sciences) - Tapa dura

 
9781462552931: Machine Learning for Social and Behavioral Research (The Methodology in the Social Sciences)

Sinopsis

Today's social and behavioral researchers increasingly need to know: "What do I do with all this data?" This book provides the skills needed to analyze and report large, complex data sets using machine learning tools, and to understand published machine learning articles. Techniques are demonstrated using actual data (Big Five Inventory, early childhood learning, and more), with a focus on the interplay of statistical algorithm, data, and theory. The identification of heterogeneity, measurement error, regularization, and decision trees are also emphasized. The book covers basic principles as well as a range of methods for analyzing univariate and multivariate data (factor analysis, structural equation models, and mixed-effects models). Analysis of text and social network data is also addressed. End-of-chapter "Computational Time and Resources" sections include discussions of key R packages; the companion website provides R programming scripts and data for the book's examples.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Ross Jacobucci, PhD, is Research Assistant Professor in the Center for Healthy Minds at the University of Wisconsin–Madison. His research interests include the development and application of machine learning for clinical research, with a focus on suicide and nonsuicidal self-injury. Dr. Jacobucci is an active developer of open-source software for the R statistical environment. His website is www.rjacobucci.com.

Kevin J. Grimm, PhD, is Professor of Psychology at Arizona State University. His research interests include multivariate methods for the analysis of change, multiple group and latent class models for understanding divergent developmental processes, nonlinearity in development, machine learning techniques for psychological data, and mathematics and reading ability development. Dr. Grimm is a recipient of the Early Career Research Award and the Barbara Byrne Book Award (for Growth Modeling: Structural Equation and Multilevel Modeling Perspectives) from the Society of Multivariate Experimental Psychology.

Zhiyong Zhang, PhD, is Professor in Quantitative Psychology in the Department of Psychology at the University of Notre Dame, where he directs the Lab for Big Data Methodology. He has conducted research in the areas of Bayesian methods, structural equation modeling, longitudinal data analysis, and missing data and non-normal data analysis. His recent research involves the development of new methods and software for social network and text analysis. Dr. Zhang is the founding editor of the Journal of Behavioral Data Science. His website is https://bigdatalab.nd.edu.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 1,27 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781462552924: Machine Learning for Social and Behavioral Research (Methodology in the Social Sciences)

Edición Destacada

ISBN 10:  1462552927 ISBN 13:  9781462552924
Editorial: Guilford Press, 2023
Tapa blanda

Resultados de la búsqueda para Machine Learning for Social and Behavioral Research...

Imagen de archivo

Kevin J. Grimm
Publicado por Guilford Publications, 2023
ISBN 10: 1462552935 ISBN 13: 9781462552931
Nuevo Tapa dura

Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FT-9781462552931

Contactar al vendedor

Comprar nuevo

EUR 98,57
Convertir moneda
Gastos de envío: EUR 1,27
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kevin J. Grimm
Publicado por Guilford Publications, 2023
ISBN 10: 1462552935 ISBN 13: 9781462552931
Nuevo Tapa dura

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FT-9781462552931

Contactar al vendedor

Comprar nuevo

EUR 102,33
Convertir moneda
Gastos de envío: EUR 4,59
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ross Jacobucci|Kevin J. Grimm (Arizona State University, United States)|Zhiyong Zhang
Publicado por Guilford Publications, 2023
ISBN 10: 1462552935 ISBN 13: 9781462552931
Nuevo Tapa dura

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Ross Jacobucci, PhD, is Assistant Professor in Quantitative Psychology in the Department of Psychology at the University of Notre Dame. His research interests include the development and application of machine learning for clinical research, with a focus. Nº de ref. del artículo: 866176398

Contactar al vendedor

Comprar nuevo

EUR 100,80
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Ross Jacobucci
Publicado por Guilford Publications, 2023
ISBN 10: 1462552935 ISBN 13: 9781462552931
Nuevo Tapa dura

Librería: THE SAINT BOOKSTORE, Southport, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 1060. Nº de ref. del artículo: B9781462552931

Contactar al vendedor

Comprar nuevo

EUR 116,47
Convertir moneda
Gastos de envío: EUR 11,94
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Jacobucci, Ross/ Grimm, Kevin J./ Zhang, Zhiyong
Publicado por Guilford Pubn, 2023
ISBN 10: 1462552935 ISBN 13: 9781462552931
Nuevo Tapa dura

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Brand New. 416 pages. 10.00x7.00x1.25 inches. In Stock. Nº de ref. del artículo: __1462552935

Contactar al vendedor

Comprar nuevo

EUR 120,08
Convertir moneda
Gastos de envío: EUR 11,53
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ross Jacobucci
Publicado por Guilford Publications Jul 2023, 2023
ISBN 10: 1462552935 ISBN 13: 9781462552931
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware - This book provides the skills needed to analyze and report large, complex data sets using machine learning tools, and to understand published machine learning articles. Techniques are demonstrated using actual data (Big Five Inventory, early childhood learning, and more), with a focus on the interplay of statistical algorithm, data, and theory. Nº de ref. del artículo: 9781462552931

Contactar al vendedor

Comprar nuevo

EUR 124,54
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ross Jacobucci
Publicado por Guilford Publications, New York, 2023
ISBN 10: 1462552935 ISBN 13: 9781462552931
Nuevo Tapa dura

Librería: AussieBookSeller, Truganina, VIC, Australia

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. Today's social and behavioral researchers increasingly need to know: "What do I do with all this data?" This book provides the skills needed to analyze and report large, complex data sets using machine learning tools, and to understand published machine learning articles. Techniques are demonstrated using actual data (Big Five Inventory, early childhood learning, and more), with a focus on the interplay of statistical algorithm, data, and theory. The identification of heterogeneity, measurement error, regularization, and decision trees are also emphasized. The book covers basic principles as well as a range of methods for analyzing univariate and multivariate data (factor analysis, structural equation models, and mixed-effects models). Analysis of text and social network data is also addressed. End-of-chapter "Computational Time and Resources" sections include discussions of key R packages; the companion website provides R programming scripts and data for the book's examples. This book provides the skills needed to analyze and report large, complex data sets using machine learning tools, and to understand published machine learning articles. Techniques are demonstrated using actual data (Big Five Inventory, early childhood learning, and more), with a focus on the interplay of statistical algorithm, data, and theory. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9781462552931

Contactar al vendedor

Comprar nuevo

EUR 113,38
Convertir moneda
Gastos de envío: EUR 31,43
De Australia a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ross Jacobucci
Publicado por Guilford Publications, New York, 2023
ISBN 10: 1462552935 ISBN 13: 9781462552931
Nuevo Tapa dura

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. Today's social and behavioral researchers increasingly need to know: "What do I do with all this data?" This book provides the skills needed to analyze and report large, complex data sets using machine learning tools, and to understand published machine learning articles. Techniques are demonstrated using actual data (Big Five Inventory, early childhood learning, and more), with a focus on the interplay of statistical algorithm, data, and theory. The identification of heterogeneity, measurement error, regularization, and decision trees are also emphasized. The book covers basic principles as well as a range of methods for analyzing univariate and multivariate data (factor analysis, structural equation models, and mixed-effects models). Analysis of text and social network data is also addressed. End-of-chapter "Computational Time and Resources" sections include discussions of key R packages; the companion website provides R programming scripts and data for the book's examples. This book provides the skills needed to analyze and report large, complex data sets using machine learning tools, and to understand published machine learning articles. Techniques are demonstrated using actual data (Big Five Inventory, early childhood learning, and more), with a focus on the interplay of statistical algorithm, data, and theory. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781462552931

Contactar al vendedor

Comprar nuevo

EUR 120,56
Convertir moneda
Gastos de envío: EUR 34,60
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ross Jacobucci
Publicado por Guilford Publications, New York, 2023
ISBN 10: 1462552935 ISBN 13: 9781462552931
Nuevo Tapa dura

Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. Today's social and behavioral researchers increasingly need to know: "What do I do with all this data?" This book provides the skills needed to analyze and report large, complex data sets using machine learning tools, and to understand published machine learning articles. Techniques are demonstrated using actual data (Big Five Inventory, early childhood learning, and more), with a focus on the interplay of statistical algorithm, data, and theory. The identification of heterogeneity, measurement error, regularization, and decision trees are also emphasized. The book covers basic principles as well as a range of methods for analyzing univariate and multivariate data (factor analysis, structural equation models, and mixed-effects models). Analysis of text and social network data is also addressed. End-of-chapter "Computational Time and Resources" sections include discussions of key R packages; the companion website provides R programming scripts and data for the book's examples. This book provides the skills needed to analyze and report large, complex data sets using machine learning tools, and to understand published machine learning articles. Techniques are demonstrated using actual data (Big Five Inventory, early childhood learning, and more), with a focus on the interplay of statistical algorithm, data, and theory. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781462552931

Contactar al vendedor

Comprar nuevo

EUR 117,92
Convertir moneda
Gastos de envío: EUR 63,70
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito