Artículos relacionados a Recursive Partitioning and Applications (Springer Series...

Recursive Partitioning and Applications (Springer Series in Statistics) - Tapa blanda

 
9781461426226: Recursive Partitioning and Applications (Springer Series in Statistics)

Sinopsis

Multiple complex pathways, characterized by interrelated events and c- ditions, represent routes to many illnesses, diseases, and ultimately death. Although there are substantial data and plausibility arguments suppo- ing many conditions as contributory components of pathways to illness and disease end points, we have, historically, lacked an e?ective method- ogy for identifying the structure of the full pathways. Regression methods, with strong linearity assumptions and data-basedconstraints onthe extent and order of interaction terms, have traditionally been the strategies of choice for relating outcomes to potentially complex explanatory pathways. However, nonlinear relationships among candidate explanatory variables are a generic feature that must be dealt with in any characterization of how health outcomes come about. It is noteworthy that similar challenges arise from data analyses in Economics, Finance, Engineering, etc. Thus, the purpose of this book is to demonstrate the e?ectiveness of a relatively recently developed methodology-recursive partitioning-as a response to this challenge. We also compare and contrast what is learned via rec- sive partitioning with results obtained on the same data sets using more traditional methods. This serves to highlight exactly where-and for what kinds of questions-recursive partitioning-based strategies have a decisive advantage over classical regression techniques.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Heping Zhang is Professor of Public Health, Statistics, and Child Study, and director of the Collaborative Center for Statistics in Science, at Yale University. He is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics, a Myrto Lefkopoulou Distinguished Lecturer Awarded by Harvard School of Public Health, and a Medallion lecturer selected by the Institute of Mathematical Statistics. Burton Singer is Courtesy Professor in the Emerging Pathogens Institute at University of Florida, and previously Charles and Marie Robertson Professor of Public and International Affairs at Princeton University. He is a member of the National Academy of Sciences and Institute of Medicine of the National Academies, and a Fellow of the American Statistical Association.

De la contraportada

The routes to many important outcomes including diseases and ultimately death as well as financial credit consist of multiple complex pathways containing interrelated events and conditions. We have historically lacked effective methodologies for identifying these pathways and their non-linear and interacting features. This book focuses on recursive partitioning strategies as a response to the challenge of pathway characterization. A highlight of the second edition is the many worked examples, most of them from epidemiology, bioinformatics, molecular genetics, physiology, social demography, banking, and marketing. The statistical issues, conceptual and computational, are not only treated in detail in the context of important scientific questions, but also an array of substantively-driven judgments are explicitly integrated in the presentation of examples.Going considerably beyond the standard treatments of recursive partitioning that focus on pathway representations via single trees, this second edition has entirely new material devoted to forests from predictive and interpretive perspectives. For contexts where identification of factors contributing to outcomes is a central issue, both random and deterministic forest generation methods are introduced via examples in genetics and epidemiology. The trees in deterministic forests are reproducible and more easily interpretable than the components of random forests. Also new in the second edition is an extensive treatment of survival forests and post-market evaluation of treatment effectiveness.Heping Zhang is Professor of Public Health, Statistics, and Child Study, and director of the Collaborative Center for Statistics in Science, at Yale University. He is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics, a Myrto Lefkopoulou Distinguished Lecturer Awarded by Harvard School of Public Health, and a Medallion lecturer selected by the Institute of Mathematical Statistics.Burton Singer is Courtesy Professor in the Emerging Pathogens Institute at University of Florida, and previously Charles and Marie Robertson Professor of Public and International Affairs at Princeton University. He is a member of the National Academy of Sciences and Institute of Medicine of the National Academies, and a Fellow of the American Statistical Association.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Like New
Ver este artículo

EUR 28,95 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781441968234: Recursive Partitioning and Applications (Springer Series in Statistics)

Edición Destacada

ISBN 10:  1441968237 ISBN 13:  9781441968234
Editorial: Springer, 2010
Tapa dura

Resultados de la búsqueda para Recursive Partitioning and Applications (Springer Series...

Imagen del vendedor

Heping Zhang|Burton H. Singer
Publicado por Springer New York, 2012
ISBN 10: 1461426227 ISBN 13: 9781461426226
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Integrates conceptual and computational treatment of tree representations of complex pathways to important outcomes across diverse scientific applicationsIntroduces random and alternative deterministic forests to facilitate interpretability of pathways with. Nº de ref. del artículo: 4197617

Contactar al vendedor

Comprar nuevo

EUR 101,04
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Burton H. Singer
Publicado por Springer New York Sep 2012, 2012
ISBN 10: 1461426227 ISBN 13: 9781461426226
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Multiple complex pathways, characterized by interrelated events and c- ditions, represent routes to many illnesses, diseases, and ultimately death. Although there are substantial data and plausibility arguments suppo- ing many conditions as contributory components of pathways to illness and disease end points, we have, historically, lacked an e ective method- ogy for identifying the structure of the full pathways. Regression methods, with strong linearity assumptions and data-basedconstraints onthe extent and order of interaction terms, have traditionally been the strategies of choice for relating outcomes to potentially complex explanatory pathways. However, nonlinear relationships among candidate explanatory variables are a generic feature that must be dealt with in any characterization of how health outcomes come about. It is noteworthy that similar challenges arise from data analyses in Economics, Finance, Engineering, etc. Thus, the purpose of this book is to demonstrate the e ectiveness of a relatively recently developed methodology-recursive partitioning-as a response to this challenge. We also compare and contrast what is learned via rec- sive partitioning with results obtained on the same data sets using more traditional methods. This serves to highlight exactly where-and for what kinds of questions-recursive partitioning-based strategies have a decisive advantage over classical regression techniques. 276 pp. Englisch. Nº de ref. del artículo: 9781461426226

Contactar al vendedor

Comprar nuevo

EUR 117,69
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Burton H. Singer
Publicado por Springer New York, 2012
ISBN 10: 1461426227 ISBN 13: 9781461426226
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Multiple complex pathways, characterized by interrelated events and c- ditions, represent routes to many illnesses, diseases, and ultimately death. Although there are substantial data and plausibility arguments suppo- ing many conditions as contributory components of pathways to illness and disease end points, we have, historically, lacked an e ective method- ogy for identifying the structure of the full pathways. Regression methods, with strong linearity assumptions and data-basedconstraints onthe extent and order of interaction terms, have traditionally been the strategies of choice for relating outcomes to potentially complex explanatory pathways. However, nonlinear relationships among candidate explanatory variables are a generic feature that must be dealt with in any characterization of how health outcomes come about. It is noteworthy that similar challenges arise from data analyses in Economics, Finance, Engineering, etc. Thus, the purpose of this book is to demonstrate the e ectiveness of a relatively recently developed methodology-recursive partitioning-as a response to this challenge. We also compare and contrast what is learned via rec- sive partitioning with results obtained on the same data sets using more traditional methods. This serves to highlight exactly where-and for what kinds of questions-recursive partitioning-based strategies have a decisive advantage over classical regression techniques. Nº de ref. del artículo: 9781461426226

Contactar al vendedor

Comprar nuevo

EUR 120,54
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Burton H. Singer
ISBN 10: 1461426227 ISBN 13: 9781461426226
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Multiple complex pathways, characterized by interrelated events and c- ditions, represent routes to many illnesses, diseases, and ultimately death. Although there are substantial data and plausibility arguments suppo- ing many conditions as contributory components of pathways to illness and disease end points, we have, historically, lacked an e ective method- ogy for identifying the structure of the full pathways. Regression methods, with strong linearity assumptions and data-basedconstraints onthe extent and order of interaction terms, have traditionally been the strategies of choice for relating outcomes to potentially complex explanatory pathways. However, nonlinear relationships among candidate explanatory variables are a generic feature that must be dealt with in any characterization of how health outcomes come about. It is noteworthy that similar challenges arise from data analyses in Economics, Finance, Engineering, etc. Thus, the purpose of this book is to demonstrate the e ectiveness of a relatively recently developed methodology¿recursive partitioning¿as a response to this challenge. We also compare and contrast what is learned via rec- sive partitioning with results obtained on the same data sets using more traditional methods. This serves to highlight exactly where¿and for what kinds of questions¿recursive partitioning¿based strategies have a decisive advantage over classical regression techniques.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 276 pp. Englisch. Nº de ref. del artículo: 9781461426226

Contactar al vendedor

Comprar nuevo

EUR 117,69
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Burton Singer Heping Zhang
Publicado por Springer, 2012
ISBN 10: 1461426227 ISBN 13: 9781461426226
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 276 2nd Edition. Nº de ref. del artículo: 2614920576

Contactar al vendedor

Comprar nuevo

EUR 157,40
Convertir moneda
Gastos de envío: EUR 9,83
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Singer Burton Zhang Heping
Publicado por Springer, 2012
ISBN 10: 1461426227 ISBN 13: 9781461426226
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand pp. 276 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 9704543

Contactar al vendedor

Comprar nuevo

EUR 165,77
Convertir moneda
Gastos de envío: EUR 10,25
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Singer Burton Zhang Heping
Publicado por Springer, 2012
ISBN 10: 1461426227 ISBN 13: 9781461426226
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND pp. 276. Nº de ref. del artículo: 1814920586

Contactar al vendedor

Comprar nuevo

EUR 170,52
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Zhang, Heping, Singer, Burton H.
Publicado por Springer, 2012
ISBN 10: 1461426227 ISBN 13: 9781461426226
Antiguo o usado Paperback

Librería: Mispah books, Redhill, SURRE, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA75814614262275

Contactar al vendedor

Comprar usado

EUR 176,55
Convertir moneda
Gastos de envío: EUR 28,95
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Heping Zhang
Publicado por Springer-Verlag New York Inc., 2012
ISBN 10: 1461426227 ISBN 13: 9781461426226
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 2nd reprint edition. 276 pages. 9.20x6.10x0.63 inches. In Stock. Nº de ref. del artículo: zk1461426227

Contactar al vendedor

Comprar nuevo

EUR 201,03
Convertir moneda
Gastos de envío: EUR 11,58
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito