Of recent coinage, the term "nondifferentiable optimization" (NDO) covers a spectrum of problems related to finding extremal values of nondifferentiable functions. Problems of minimizing nonsmooth functions arise in engineering applications as well as in mathematics proper. The Chebyshev approximation problem is an ample illustration of this. Without loss of generality, we shall consider only minimization problems. Among nonsmooth minimization problems, minimax problems and convex problems have been studied extensively ([31], [36], [57], [110], [120]). Interest in NDO has been constantly growing in recent years (monographs: [30], [81], [127] and articles and papers: [14], [20], [87]-[89], [98], [130], [135], [140]-[142], [152], [153], [160], all dealing with various aspects of non smooth optimization). For solving an arbitrary minimization problem, it is neces sary to: 1. Study properties of the objective function, in particular, its differentiability and directional differentiability. 2. Establish necessary (and, if possible, sufficient) condi tions for a global or local minimum. 3. Find the direction of descent (steepest or, simply, feasible--in appropriate sense). 4. Construct methods of successive approximation. In this book, the minimization problems for nonsmooth func tions of a finite number of variables are considered. Of fun damental importance are necessary conditions for an extremum (for example, [24], [45], [57], [73], [74], [103], [159], [163], [167], [168].
"Sinopsis" puede pertenecer a otra edición de este libro.
Of recent coinage, the term "nondifferentiable optimization" (NDO) covers a spectrum of problems related to finding extremal values of nondifferentiable functions. Problems of minimizing nonsmooth functions arise in engineering applications as well as in mathematics proper. The Chebyshev approximation problem is an ample illustration of this. Without loss of generality, we shall consider only minimization problems. Among nonsmooth minimization problems, minimax problems and convex problems have been studied extensively ([31], [36], [57], [110], [120]). Interest in NDO has been constantly growing in recent years (monographs: [30], [81], [127] and articles and papers: [14], [20], [87]-[89], [98], [130], [135], [140]-[142], [152], [153], [160], all dealing with various aspects of non smooth optimization). For solving an arbitrary minimization problem, it is neces sary to: 1. Study properties of the objective function, in particular, its differentiability and directional differentiability. 2. Establish necessary (and, if possible, sufficient) condi tions for a global or local minimum. 3. Find the direction of descent (steepest or, simply, feasible--in appropriate sense). 4. Construct methods of successive approximation. In this book, the minimization problems for nonsmooth func tions of a finite number of variables are considered. Of fun damental importance are necessary conditions for an extremum (for example, [24], [45], [57], [73], [74], [103], [159], [163], [167], [168].
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 29,64 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 4,72 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781461382706_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Of recent coinage, the term nondifferentiable optimization (NDO) covers a spectrum of problems related to finding extremal values of nondifferentiable functions. Problems of minimizing nonsmooth functions arise in engineering applications as well as in ma. Nº de ref. del artículo: 4196232
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Of recent coinage, the term 'nondifferentiable optimization' (NDO) covers a spectrum of problems related to finding extremal values of nondifferentiable functions. Problems of minimizing nonsmooth functions arise in engineering applications as well as in mathematics proper. The Chebyshev approximation problem is an ample illustration of this. Without loss of generality, we shall consider only minimization problems. Among nonsmooth minimization problems, minimax problems and convex problems have been studied extensively ([31], [36], [57], [110], [120]). Interest in NDO has been constantly growing in recent years (monographs: [30], [81], [127] and articles and papers: [14], [20], [87]-[89], [98], [130], [135], [140]-[142], [152], [153], [160], all dealing with various aspects of non smooth optimization). For solving an arbitrary minimization problem, it is neces sary to: 1. Study properties of the objective function, in particular, its differentiability and directional differentiability. 2. Establish necessary (and, if possible, sufficient) condi tions for a global or local minimum. 3. Find the direction of descent (steepest or, simply, feasible--in appropriate sense). 4. Construct methods of successive approximation. In this book, the minimization problems for nonsmooth func tions of a finite number of variables are considered. Of fun damental importance are necessary conditions for an extremum (for example, [24], [45], [57], [73], [74], [103], [159], [163], [167], [168]. Nº de ref. del artículo: 9781461382706
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 789. Nº de ref. del artículo: C9781461382706
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Of recent coinage, the term 'nondifferentiable optimization' (NDO) covers a spectrum of problems related to finding extremal values of nondifferentiable functions. Problems of minimizing nonsmooth functions arise in engineering applications as well as in mathematics proper. The Chebyshev approximation problem is an ample illustration of this. Without loss of generality, we shall consider only minimization problems. Among nonsmooth minimization problems, minimax problems and convex problems have been studied extensively ([31], [36], [57], [110], [120]). Interest in NDO has been constantly growing in recent years (monographs: [30], [81], [127] and articles and papers: [14], [20], [87]-[89], [98], [130], [135], [140]-[142], [152], [153], [160], all dealing with various aspects of non smooth optimization). For solving an arbitrary minimization problem, it is neces sary to: 1. Study properties of the objective function, in particular, its differentiability and directional differentiability. 2. Establish necessary (and, if possible, sufficient) condi tions for a global or local minimum. 3. Find the direction of descent (steepest or, simply, feasible--in appropriate sense). 4. Construct methods of successive approximation. In this book, the minimization problems for nonsmooth func tions of a finite number of variables are considered. Of fun damental importance are necessary conditions for an extremum (for example, [24], [45], [57], [73], [74], [103], [159], [163], [167], [168].Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 480 pp. Englisch. Nº de ref. del artículo: 9781461382706
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. reprint edition. 469 pages. 9.50x6.75x1.25 inches. In Stock. Nº de ref. del artículo: x-146138270X
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2716030034527
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Of recent coinage, the term 'nondifferentiable optimization' (NDO) covers a spectrum of problems related to finding extremal values of nondifferentiable functions. Problems of minimizing nonsmooth functions arise in engineering applications as well as in mathematics proper. The Chebyshev approximation problem is an ample illustration of this. Without loss of generality, we shall consider only minimization problems. Among nonsmooth minimization problems, minimax problems and convex problems have been studied extensively ([31], [36], [57], [110], [120]). Interest in NDO has been constantly growing in recent years (monographs: [30], [81], [127] and articles and papers: [14], [20], [87]-[89], [98], [130], [135], [140]-[142], [152], [153], [160], all dealing with various aspects of non smooth optimization). For solving an arbitrary minimization problem, it is neces sary to: 1. Study properties of the objective function, in particular, its differentiability and directional differentiability. 2. Establish necessary (and, if possible, sufficient) condi tions for a global or local minimum. 3. Find the direction of descent (steepest or, simply, feasible--in appropriate sense). 4. Construct methods of successive approximation. In this book, the minimization problems for nonsmooth func tions of a finite number of variables are considered. Of fun damental importance are necessary conditions for an extremum (for example, [24], [45], [57], [73], [74], [103], [159], [163], [167], [168]. 480 pp. Englisch. Nº de ref. del artículo: 9781461382706
Cantidad disponible: 2 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA773146138270X6
Cantidad disponible: 1 disponibles