At first glance, a book on "Design by Composition for Rapid Prototyping" may seem out of place in a series on Robotics. However, this work has a couple of strong connections to the field of robotics and the robotics community, and I am delighted to introduce it to the series. The first connection is the motivation behind Binnard's work. Michael Binnard came to Stanford after having done his Masters thesis at the M.LT. Artificial Intelligence Lab, where he designed and built small walking robots, such as Boadicea (http://www.ai.mit.eduJprojects/boadicea/).At M.LT. he observed first-hand how difficult it is to align, connect and support standard actuators, sensors, and processors in small mobile robots. Figure lea) below shows how complicated it is just to connect a simple motor to one link of a robot leg using conventional methods. Surely there had to be a better way! Shape deposition manufacturing, an emerging rapid prototyping process, offered a possible solution. Actuators, sensors, processors and other components could be embedded directly into almost arbitrary three-dimensional shapes, without any of the fasteners and couplings that complicate the design in Figure lea). The process makes it possible to construct integrated robotic mechanisms, such as the example shown in Figure 1 (b) and the additional examples found in Chapters 7 and 8 of this monograph.
"Sinopsis" puede pertenecer a otra edición de este libro.
At first glance, a book on "Design by Composition for Rapid Prototyping" may seem out of place in a series on Robotics. However, this work has a couple of strong connections to the field of robotics and the robotics community, and I am delighted to introduce it to the series. The first connection is the motivation behind Binnard's work. Michael Binnard came to Stanford after having done his Masters thesis at the M.LT. Artificial Intelligence Lab, where he designed and built small walking robots, such as Boadicea (http://www.ai.mit.eduJprojects/boadicea/).At M.LT. he observed first-hand how difficult it is to align, connect and support standard actuators, sensors, and processors in small mobile robots. Figure lea) below shows how complicated it is just to connect a simple motor to one link of a robot leg using conventional methods. Surely there had to be a better way! Shape deposition manufacturing, an emerging rapid prototyping process, offered a possible solution. Actuators, sensors, processors and other components could be embedded directly into almost arbitrary three-dimensional shapes, without any of the fasteners and couplings that complicate the design in Figure lea). The process makes it possible to construct integrated robotic mechanisms, such as the example shown in Figure 1 (b) and the additional examples found in Chapters 7 and 8 of this monograph.
The material in this book is based on the assumption that new manufacturing techniques offer potential benefits to electromechanical designers, but that appropriate design systems are necessary. The book describes a design paradigm, 'design by composition', that facilitates design of integrated electromechanical devices for fabrication with novel rapid prototyping processes. New manufacturing techniques called layered manufacturing, rapid prototyping, or Solid Freeform Fabrication (SFF) build parts by a sequence of deposition and shaping operations. These techniques allow a greater degree of manufacturing automation, and offer new design possibilities. For example, during SFF fabrication, the interior of parts is accessible. Traditional manufacturing techniques, on the other hand, generally of parts with complex internal geometry and embedded components. The design by composition technique is particularly well suited to design and fabrication of mechanical parts with embedded electronic, sensor, and actuator components. The highly integrated mechanisms that can be fabricated with the Shape Deposition Manufacturing (SDM) process and the design by composition approach can result in small robotic systems with increased performance and reliability. The book describes some of the new possibilities offered by SFF techniques, in particular the SDM process, and how design by composition makes these capabilities accessible to designers. The book presents the concept of design by composition, as well as the theoretical development of algorithms for its implementation. A prototype implementation is described, as well as some example parts built at Stanford University with the system.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,91 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 7,63 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781461374008
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2716030033875
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781461374008_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -At first glance, a book on 'Design by Composition for Rapid Prototyping' may seem out of place in a series on Robotics. However, this work has a couple of strong connections to the field of robotics and the robotics community, and I am delighted to introduce it to the series. The first connection is the motivation behind Binnard's work. Michael Binnard came to Stanford after having done his Masters thesis at the M.LT. Artificial Intelligence Lab, where he designed and built small walking robots, such as Boadicea .At M.LT. he observed first-hand how difficult it is to align, connect and support standard actuators, sensors, and processors in small mobile robots. Figure lea) below shows how complicated it is just to connect a simple motor to one link of a robot leg using conventional methods. Surely there had to be a better way! Shape deposition manufacturing, an emerging rapid prototyping process, offered a possible solution. Actuators, sensors, processors and other components could be embedded directly into almost arbitrary three-dimensional shapes, without any of the fasteners and couplings that complicate the design in Figure lea). The process makes it possible to construct integrated robotic mechanisms, such as the example shown in Figure 1 (b) and the additional examples found in Chapters 7 and 8 of this monograph. 160 pp. Englisch. Nº de ref. del artículo: 9781461374008
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. At first glance, a book on Design by Composition for Rapid Prototyping may seem out of place in a series on Robotics. However, this work has a couple of strong connections to the field of robotics and the robotics community, and I am delighted to introduc. Nº de ref. del artículo: 4195540
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 160. Nº de ref. del artículo: 2697847367
Cantidad disponible: 4 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 254. Nº de ref. del artículo: C9781461374008
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 160 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 94549912
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 160. Nº de ref. del artículo: 1897847373
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -At first glance, a book on 'Design by Composition for Rapid Prototyping' may seem out of place in a series on Robotics. However, this work has a couple of strong connections to the field of robotics and the robotics community, and I am delighted to introduce it to the series. The first connection is the motivation behind Binnard's work. Michael Binnard came to Stanford after having done his Masters thesis at the M.LT. Artificial Intelligence Lab, where he designed and built small walking robots, such as Boadicea (ai.mit.eduJprojects/boadicea/).At M.LT. he observed first-hand how difficult it is to align, connect and support standard actuators, sensors, and processors in small mobile robots. Figure lea) below shows how complicated it is just to connect a simple motor to one link of a robot leg using conventional methods. Surely there had to be a better way! Shape deposition manufacturing, an emerging rapid prototyping process, offered a possible solution. Actuators, sensors, processors and other components could be embedded directly into almost arbitrary three-dimensional shapes, without any of the fasteners and couplings that complicate the design in Figure lea). The process makes it possible to construct integrated robotic mechanisms, such as the example shown in Figure 1 (b) and the additional examples found in Chapters 7 and 8 of this monograph.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 160 pp. Englisch. Nº de ref. del artículo: 9781461374008
Cantidad disponible: 1 disponibles