Artículos relacionados a Bayesian Modeling of Uncertainty in Low-Level Vision

Bayesian Modeling of Uncertainty in Low-Level Vision - Tapa blanda

 
9781461316381: Bayesian Modeling of Uncertainty in Low-Level Vision

Esta edición ISBN ya no está disponible.

Sinopsis

1 Introduction.- 1.1 Modeling uncertainty in low-level vision.- 1.2 Previous work.- 1.3 Overview of results.- 1.4 Organization.- 2 Representations for low-level vision.- 2.1 Visible surface representations.- 2.2 Visible surface algorithms.- 2.2.1 Regularization.- 2.2.2 Finite element discretization.- 2.2.3 Relaxation.- 2.3 Multiresolution representations.- 2.3.1 Multigrid algorithms.- 2.3.2 Relative representations.- 2.3.3 Hierarchical basis functions.- 2.4 Discontinuities.- 2.5 Alternative representations.- 3 Bayesian models and Markov Random Fields.- 3.1 Bayesian models.- 3.2 Markov Random Fields.- 3.3 Using probabilistic models.- 4 Prior models.- 4.1 Regularization and fractal priors.- 4.2 Generating constrained fractals.- 4.3 Relative depth representations (reprise).- 4.4 Mechanical vs. probabilistic models.- 5 Sensor models.- 5.1 Sparse data: spring models.- 5.2 Sparse data: force field models.- 5.3 Dense data: optical flow.- 5.4 Dense data: image intensities.- 6 Posterior estimates.- 6.1 MAP estimation.- 6.2 Uncertainty estimation.- 6.3 Regularization parameter estimation.- 6.4 Motion estimation without correspondence.- 7 Incremental algorithms for depth-from-motion.- 7.1 Kaiman filtering.- 7.2 Incremental iconic depth-from-motion.- 7.2.1 Mathematical analysis.- 7.2.2 Evaluation.- 7.3 Joint modeling of depth and intensity.- 7.3.1 Regularized stereo.- 7.3.2 Recursive motion estimation.- 7.3.3 Adding discontinuities.- 8 Conclusions.- 8.1 Summary.- 8.2 Future research.- A Finite element implementation.- B Fourier analysis.- B.1 Filtering behavior of regularization.- B.2 Fourier analysis of the posterior distribution.- B.3 Analysis of gradient descent.- B.4 Finite element solution.- B.5 Fourier analysis of multigrid relaxation.- C Analysis of optical flow computation.- D Analysis of parameter estimation.- D.1 Computing marginal distributions.- D.2 Bayesian estimation equations.- D.3 Likelihood of observations.- Table of symbols.

"Sinopsis" puede pertenecer a otra edición de este libro.

(Ningún ejemplar disponible)

Buscar:



Crear una petición

¿No encuentra el libro que está buscando? Seguiremos buscando por usted. Si alguno de nuestros vendedores lo incluye en IberLibro, le avisaremos.

Crear una petición

Otras ediciones populares con el mismo título

9780792390398: Bayesian Modeling of Uncertainty in Low-Level Vision: 79 (The Springer International Series in Engineering and Computer Science)

Edición Destacada

ISBN 10:  0792390393 ISBN 13:  9780792390398
Editorial: Springer, 1989
Tapa dura