Artículos relacionados a Nonlinear Functional Analysis and Its Applications:...

Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators - Tapa blanda

 
9781461209867: Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators

Esta edición ISBN ya no está disponible.

Sinopsis

to the Subject.- 18 Variational Problems, the Ritz Method, and the Idea of Orthogonality.- §18.1. The Space C0?(G) and the Variational Lemma.- §18.2. Integration by Parts.- §18.3. The First Boundary Value Problem and the Ritz Method.- §18.4. The Second and Third Boundary Value Problems and the Ritz Method.- §18.5. Eigenvalue Problems and the Ritz Method.- §18.6. The Hölder Inequality and its Applications.- §18.7. The History of the Dirichlet Principle and Monotone Operators.- §18.8. The Main Theorem on Quadratic Minimum Problems.- §18.9. The Inequality of Poincaré-Friedrichs.- §18.10. The Functional Analytic Justification of the Dirichlet Principle.- §18.11. The Perpendicular Principle, the Riesz Theorem, and the Main Theorem on Linear Monotone Operators.- §18.12. The Extension Principle and the Completion Principle.- §18.13. Proper Subregions.- §18.14. The Smoothing Principle.- §18.15. The Idea of the Regularity of Generalized Solutions and the Lemma of Weyl.- §18.16. The Localization Principle.- §18.17. Convex Variational Problems, Elliptic Differential Equations, and Monotonicity.- §18.18. The General Euler-Lagrange Equations.- §18.19. The Historical Development of the 19th and 20th Problems of Hilbert and Monotone Operators.- §18.20. Sufficient Conditions for Local and Global Minima and Locally Monotone Operators.- 19 The Galerkin Method for Differential and Integral Equations, the Friedrichs Extension, and the Idea of Self-Adjointness.- §19.1. Elliptic Differential Equations and the Galerkin Method.- §19.2. Parabolic Differential Equations and the Galerkin Method.- §19.3. Hyperbolic Differential Equations and the Galerkin Method.- §19.4. Integral Equations and the Galerkin Method.- §19.5. Complete Orthonormal Systems and Abstract Fourier Series.- §19.6. Eigenvalues of Compact Symmetric Operators (Hilbert-Schmidt Theory).- §19.7. Proof of Theorem 19.B.- §19.8. Self-Adjoint Operators.- §19.9. The Friedrichs Extension of Symmetric Operators.- §19.10. Proof of Theorem 19.C.- §19.11. Application to the Poisson Equation.- §19.12. Application to the Eigenvalue Problem for the Laplace Equation.- §19.13. The Inequality of Poincaré and the Compactness Theorem of Rellich.- §19.14. Functions of Self-Adjoint Operators.- §19.15. Application to the Heat Equation.- §19.16. Application to the Wave Equation.- §19.17. Semigroups and Propagators, and Their Physical Relevance.- §19.18. Main Theorem on Abstract Linear Parabolic Equations.- §19.19. Proof of Theorem 19.D.- §19.20. Monotone Operators and the Main Theorem on Linear Nonexpansive Semigroups.- §19.21. The Main Theorem on One-Parameter Unitary Groups.- §19.22. Proof of Theorem 19.E.- §19.23. Abstract Semilinear Hyperbolic Equations.- §19.24. Application to Semilinear Wave Equations.- §19.25. The Semilinear Schrödinger Equation.- §19.26. Abstract Semilinear Parabolic Equations, Fractional Powers of Operators, and Abstract Sobolev Spaces.- §19.27. Application to Semilinear Parabolic Equations.- §19.28. Proof of Theorem 19.I.- §19.29. Five General Uniqueness Principles and Monotone Operators.- §19.30. A General Existence Principle and Linear Monotone Operators.- 20 Difference Methods and Stability.- §20.1. Consistency, Stability, and Convergence.- §20.2. Approximation of Differential Quotients.- §20.3. Application to Boundary Value Problems for Ordinary Differential Equations.- §20.4. Application to Parabolic Differential Equations.- §20.5. Application to Elliptic Differential Equations.- §20.6. The Equivalence Between Stability and Convergence.- §20.7. The Equivalence Theorem of Lax for Evolution Equations.- Linear Monotone Problems.- 21 Auxiliary Tools and the Convergence of the Galerkin Method for Linear Operator Equations.- §21.1. Generalized Derivatives.- §21.2. Sobolev Spaces.- §21.3. The Sobolev Embedding Theorems.- §21.4. Proof of the Sobolev Embedding Theorems.- §21.5. Duality in B-Spaces.- §21.6. Duality in H-Sp

"Sinopsis" puede pertenecer a otra edición de este libro.

(Ningún ejemplar disponible)

Buscar:



Crear una petición

¿No encuentra el libro que está buscando? Seguiremos buscando por usted. Si alguno de nuestros vendedores lo incluye en IberLibro, le avisaremos.

Crear una petición

Otras ediciones populares con el mismo título

9780387968025: Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators (Nonlinear Functional Analysis & Its Applications)

Edición Destacada

ISBN 10:  0387968024 ISBN 13:  9780387968025
Editorial: Springer, 1989
Tapa dura