SENSOR NETWORKS COMPRISE OF A NUMBER OF SENSORS INSTALLED ACROSS A SPATIALLY DISTRIBUTED NETWORK, WHICH GATHER INFORMATION AND PERIODICALLY FEED A CENTRAL SERVER WITH THE MEASURED DATA. THE SERVER MONITORS THE DATA, ISSUES POSSIBLE ALARMS AND COMPUTES FAST AGGREGATES. AS DATA ANALYSIS REQUESTS MAY CONCERN BOTH PRESENT AND PAST DATA, THE SERVER IS FORCED TO STORE THE ENTIRE STREAM. BUT THE LIMITED STORAGE CAPACITY OF A SERVER MAY REDUCE THE AMOUNT OF DATA STORED ON THE DISK. ONE SOLUTION IS TO COMPUTE SUMMARIES OF THE DATA AS IT ARRIVES, AND TO USE THESE SUMMARIES TO INTERPOLATE THE REAL DATA. THIS WORK INTRODUCES A RECENTLY DEFINED SPATIO-TEMPORAL PATTERN, CALLED TREND CLUSTER, TO SUMMARIZE, INTERPOLATE AND IDENTIFY ANOMALIES IN A SENSOR NETWORK. AS AN EXAMPLE, THE APPLICATION OF TREND CLUSTER DISCOVERY TO MONITOR THE EFFICIENCY OF PHOTOVOLTAIC POWER PLANTS IS DISCUSSED. THE WORK CLOSES WITH REMARKS ON NEW POSSIBILITIES FOR SURVEILLANCE ENABLED BY RECENT DEVELOPMENTS IN SENSING TECHNOLOGY.
"Sinopsis" puede pertenecer a otra edición de este libro.
Sensor networks comprise of a number of sensors installed across a spatially distributed network, which gather information and periodically feed a central server with the measured data. The server monitors the data, issues possible alarms and computes fast aggregates. As data analysis requests may concern both present and past data, the server is forced to store the entire stream. But the limited storage capacity of a server may reduce the amount of data stored on the disk. One solution is to compute summaries of the data as it arrives, and to use these summaries to interpolate the real data. This work introduces a recently defined spatio-temporal pattern, called trend cluster, to summarize, interpolate and identify anomalies in a sensor network. As an example, the application of trend cluster discovery to monitor the efficiency of photovoltaic power plants is discussed. The work closes with remarks on new possibilities for surveillance enabled by recent developments in sensing technology.
Emerging real life applications, such as environmental compliance, ecological studies and meteorology, are characterized by real-time data acquisition through a number of (wireless) remote sensors. Operatively, remote sensors are installed across a spatially distributed network; they gather information along a number of attribute dimensions and periodically feed a central server with the measured data. The server is required to monitor these data, issue possible alarms or compute fast aggregates. As data analysis requests, which are submitted to a server, may concern both present and past data, the server is forced to store the entire stream. But, in the case of massive streams (large networks and/or frequent transmissions), the limited storage capacity of a server may impose to reduce the amount of data stored on the disk. One solution to address the storage limits is to compute summaries of the data as they arrive and use these summaries to interpolate the real data which are discarded instead. On any future demands of further analysis of the discarded data, the server pieces together the data from the summaries stored in database and processes them according to the requests.
This work introduces the multiple possibilities and facets of a recently defined spatio-temporal pattern, called trend cluster, and its applications to summarize, interpolate and identify anomalies in a sensor network. As an example application, the authors illustrate the application of trend cluster discovery to monitor the efficiency of photovoltaic power plants. The work closes with remarks on new possibilities for surveillance gained by recent developments of sensing technology, and with an outline of future challenges.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 45,00 gastos de envío desde Alemania a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,50 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530317203
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781447154532_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Sensor networks comprise of a number of sensors installed across a spatially distributed network, which gather information and periodically feed a central server with the measured data. The server monitors the data, issues possible alarms and computes fast aggregates. As data analysis requests may concern both present and past data, the server is forced to store the entire stream. But the limited storage capacity of a server may reduce the amount of data stored on the disk. One solution is to compute summaries of the data as it arrives, and to use these summaries to interpolate the real data. This work introduces a recently defined spatio-temporal pattern, called trend cluster, to summarize, interpolate and identify anomalies in a sensor network. As an example, the application of trend cluster discovery to monitor the efficiency of photovoltaic power plants is discussed. The work closes with remarks on new possibilities for surveillance enabled by recent developments in sensing technology. 120 pp. Englisch. Nº de ref. del artículo: 9781447154532
Cantidad disponible: 2 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 212. Nº de ref. del artículo: C9781447154532
Cantidad disponible: Más de 20 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut - Buchschnitt verkürzt - gepflegter, sauberer Zustand - Ausgabejahr 2014 | Seiten: 120 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 24182073/12
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Sensor networks comprise of a number of sensors installed across a spatially distributed network, which gather information and periodically feed a central server with the measured data. The server monitors the data, issues possible alarms and computes fast aggregates. As data analysis requests may concern both present and past data, the server is forced to store the entire stream. But the limited storage capacity of a server may reduce the amount of data stored on the disk. One solution is to compute summaries of the data as it arrives, and to use these summaries to interpolate the real data. This work introduces a recently defined spatio-temporal pattern, called trend cluster, to summarize, interpolate and identify anomalies in a sensor network. As an example, the application of trend cluster discovery to monitor the efficiency of photovoltaic power plants is discussed. The work closes with remarks on new possibilities for surveillance enabled by recent developments in sensing technology. Nº de ref. del artículo: 9781447154532
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 2014 edition. 123 pages. 9.00x6.00x0.25 inches. In Stock. Nº de ref. del artículo: x-1447154533
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduces the trend cluster, a recently defined spatio-temporal pattern, and its use in summarizing, interpolating and identifying anomalies in sensor networksIllustrates the application of trend cluster discovery to monitor the efficiency of pho. Nº de ref. del artículo: 4185260
Cantidad disponible: Más de 20 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA77314471545336
Cantidad disponible: 1 disponibles