Artículos relacionados a Fundamentals of Predictive Text Mining (Texts in Computer...

Fundamentals of Predictive Text Mining (Texts in Computer Science) - Tapa blanda

 
9781447125655: Fundamentals of Predictive Text Mining (Texts in Computer Science)

Sinopsis

One consequence of the pervasive use of computers is that most documents originate in digital form. Widespread use of the Internet makes them readily available. Text mining – the process of analyzing unstructured natural-language text – is concerned with how to extract information from these documents. Developed from the authors’ highly successful Springer reference on text mining, Fundamentals of Predictive Text Mining is an introductory textbook and guide to this rapidly evolving field. Integrating topics spanning the varied disciplines of data mining, machine learning, databases, and computational linguistics, this uniquely useful book also provides practical advice for text mining. In-depth discussions are presented on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Background on data mining is beneficial, but not essential. Where advanced concepts are discussed that require mathematical maturity for a proper understanding, intuitive explanations are also provided for less advanced readers. Topics and features: presents a comprehensive, practical and easy-to-read introduction to text mining; includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter; explores the application and utility of each method, as well as the optimum techniques for specific scenarios; provides several descriptive case studies that take readers from problem description to systems deployment in the real world; includes access to industrial-strength text-mining software that runs on any computer; describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English); contains links to free downloadable software and other supplementary instruction material. Fundamentals of Predictive Text Mining is an essential resource for IT professionalsand managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students. Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey.

De la contraportada

One consequence of the pervasive use of computers is that most documents originate in digital form. Widespread use of the Internet makes them readily available. Text mining - the process of analyzing unstructured natural-language text is concerned with how to extract information from these documents.

Developed from the authors' highly successful Springer reference on text mining, Fundamentals of Predictive Text Mining is an introductory textbook and guide to this rapidly evolving field. Integrating topics spanning the varied disciplines of data mining, machine learning, databases, and computational linguistics, this uniquely useful book also provides practical advice for text mining. In-depth discussions are presented on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Background on data mining is beneficial, but not essential. Where advanced concepts are discussed that require mathematical maturity for a proper understanding, intuitive explanations are also provided for less advanced readers.

Topics and features:

  • Presents a comprehensive, practical and easy-to-read introduction to text mining
  • Includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter
  • Explores the application and utility of each method, as well as the optimum techniques for specific scenarios
  • Provides several descriptive case studies that take readers from problem description to systems deployment in the real world
  • Includes access to industrial-strength text-mining software that runs on any computer.
  • Describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English)
  • Contains links to free downloadable software and other supplementary instruction material

Fundamentals of Predictive Text Mining is an essential resource for IT professionals and managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students.

Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer
  • Año de publicación2012
  • ISBN 10 1447125657
  • ISBN 13 9781447125655
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas240
  • Contacto del fabricanteno disponible

Comprar usado

Condición: Bien
Shipped within 24 hours from our...
Ver este artículo

EUR 9,44 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

Resultados de la búsqueda para Fundamentals of Predictive Text Mining (Texts in Computer...

Imagen de archivo

Weiss, Sholom M. Sholom M. Weiss, Nitin Indurkhya, Tong Zhang,
Publicado por Springer -, 2012
ISBN 10: 1447125657 ISBN 13: 9781447125655
Antiguo o usado paperback

Librería: Bahamut Media, Reading, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: Very Good. Shipped within 24 hours from our UK warehouse. Clean, undamaged book with no damage to pages and minimal wear to the cover. Spine still tight, in very good condition. Remember if you are not happy, you are covered by our 100% money back guarantee. Nº de ref. del artículo: 6545-9781447125655

Contactar al vendedor

Comprar usado

EUR 13,31
Convertir moneda
Gastos de envío: EUR 9,44
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Weiss, Sholom M. Sholom M. Weiss, Nitin Indurkhya, Tong Zhang,
Publicado por Springer, 2012
ISBN 10: 1447125657 ISBN 13: 9781447125655
Antiguo o usado paperback

Librería: AwesomeBooks, Wallingford, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: Very Good. Fundamentals of Predictive Text Mining (Texts in Computer Science) This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. . Nº de ref. del artículo: 7719-9781447125655

Contactar al vendedor

Comprar usado

EUR 13,31
Convertir moneda
Gastos de envío: EUR 9,44
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Weiss, Sholom M., Indurkhya, Nitin, Zhang, Tong
Publicado por Springer, 2012
ISBN 10: 1447125657 ISBN 13: 9781447125655
Antiguo o usado Tapa blanda

Librería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Very Good. 240 pp., paperback, previous owner's name neatly inked to the title page, else very good. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Nº de ref. del artículo: ZB1314523

Contactar al vendedor

Comprar usado

EUR 12,77
Convertir moneda
Gastos de envío: EUR 20,98
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Weiss, Sholom M.; Indurkhya, Nitin; Zhang, Tong
Publicado por Springer, 2012
ISBN 10: 1447125657 ISBN 13: 9781447125655
Antiguo o usado Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. Nº de ref. del artículo: 19269362-5

Contactar al vendedor

Comprar usado

EUR 40,25
Convertir moneda
Gastos de envío: EUR 17,48
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Sholom M. Weiss
Publicado por Springer London Sep 2012, 2012
ISBN 10: 1447125657 ISBN 13: 9781447125655
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -One consequence of the pervasive use of computers is that most documents originate in digital form. Widespread use of the Internet makes them readily available. Text mining - the process of analyzing unstructured natural-language text - is concerned with how to extract information from these documents.Developed from the authors' highly successful Springer reference on text mining, Fundamentals of Predictive Text Mining is an introductory textbook and guide to this rapidly evolving field. Integrating topics spanning the varied disciplines of data mining, machine learning, databases, and computational linguistics, this uniquely useful book also provides practical advice for text mining. In-depth discussions are presented on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Background on data mining is beneficial, but not essential. Where advanced concepts are discussed that require mathematical maturity for a proper understanding, intuitive explanations are also provided for less advanced readers.Topics and features: presents a comprehensive, practical and easy-to-read introduction to text mining; includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter; explores the application and utility of each method, as well as the optimum techniques for specific scenarios; provides several descriptive case studies that take readers from problem description to systems deployment in the real world; includes access to industrial-strength text-mining software that runs on any computer; describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English); contains links to free downloadable software and other supplementary instruction material.Fundamentals of Predictive Text Mining is an essential resource for IT professionals and managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students.Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey. 240 pp. Englisch. Nº de ref. del artículo: 9781447125655

Contactar al vendedor

Comprar nuevo

EUR 58,84
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Sholom M. Weiss|Nitin Indurkhya|Tong Zhang
Publicado por Springer London, 2012
ISBN 10: 1447125657 ISBN 13: 9781447125655
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents a comprehensive, practical and easy-to-read introduction to text miningIncludes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapterProvides several descriptive case studies that take reade. Nº de ref. del artículo: 4184507

Contactar al vendedor

Comprar nuevo

EUR 52,76
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Weiss, Sholom M.; Indurkhya, Nitin; Zhang, Tong
Publicado por Springer, 2012
ISBN 10: 1447125657 ISBN 13: 9781447125655
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9781447125655_new

Contactar al vendedor

Comprar nuevo

EUR 68,14
Convertir moneda
Gastos de envío: EUR 4,70
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Sholom M. Weiss
Publicado por Springer London, Springer London, 2012
ISBN 10: 1447125657 ISBN 13: 9781447125655
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - One consequence of the pervasive use of computers is that most documents originate in digital form. Widespread use of the Internet makes them readily available. Text mining - the process of analyzing unstructured natural-language text - is concerned with how to extract information from these documents.Developed from the authors' highly successful Springer reference on text mining, Fundamentals of Predictive Text Mining is an introductory textbook and guide to this rapidly evolving field. Integrating topics spanning the varied disciplines of data mining, machine learning, databases, and computational linguistics, this uniquely useful book also provides practical advice for text mining. In-depth discussions are presented on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Background on data mining is beneficial, but not essential. Where advanced concepts are discussed that require mathematical maturity for a proper understanding, intuitive explanations are also provided for less advanced readers.Topics and features: presents a comprehensive, practical and easy-to-read introduction to text mining; includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter; explores the application and utility of each method, as well as the optimum techniques for specific scenarios; provides several descriptive case studies that take readers from problem description to systems deployment in the real world; includes access to industrial-strength text-mining software that runs on any computer; describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English); contains links to free downloadable software and other supplementary instruction material.Fundamentals of Predictive Text Mining is an essential resource for IT professionalsand managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students.Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey. Nº de ref. del artículo: 9781447125655

Contactar al vendedor

Comprar nuevo

EUR 62,28
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Weiss, Sholom M.
Publicado por Springer, 2012
ISBN 10: 1447125657 ISBN 13: 9781447125655
Antiguo o usado paperback

Librería: Textbooks_Source, Columbia, MO, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: Good. 2010th Edition. Ships in a BOX from Central Missouri! May not include working access code. Will not include dust jacket. Has used sticker(s) and some writing or highlighting. UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). Nº de ref. del artículo: 001515778U

Contactar al vendedor

Comprar usado

EUR 13,62
Convertir moneda
Gastos de envío: EUR 65,58
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Weiss, Sholom M.
Publicado por Springer 2012-09, 2012
ISBN 10: 1447125657 ISBN 13: 9781447125655
Nuevo PF

Librería: Chiron Media, Wallingford, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9781447125655

Contactar al vendedor

Comprar nuevo

EUR 62,28
Convertir moneda
Gastos de envío: EUR 17,70
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 10 disponibles

Añadir al carrito

Existen otras 5 copia(s) de este libro

Ver todos los resultados de su búsqueda