-Preface. -1. The How, When, and Why of Mathematics.- 2. Logically Speaking.- 3.Introducing the Contrapositive and Converse.- 4. Set Notation and Quantifiers.- 5. Proof Techniques.- 6. Sets.- 7. Operations on Sets.- 8. More on Operations on Sets.- 9. The Power Set and the Cartesian Product.- 10. Relations.- 11. Partitions.- 12. Order in the Reals.- 13. Consequences of the Completeness of (\Bbb R).- 14. Functions, Domain, and Range.- 15. Functions, One-to-One, and Onto.- 16. Inverses.- 17. Images and Inverse Images.- 18. Mathematical Induction.- 19. Sequences.- 20. Convergence of Sequences of Real Numbers.- 21. Equivalent Sets.- 22. Finite Sets and an Infinite Set.- 23. Countable and Uncountable Sets.- 24. The Cantor-Schröder-Bernstein Theorem.- 25. Metric Spaces.- 26. Getting to Know Open and Closed Sets.- 27. Modular Arithmetic.- 28. Fermat's Little Theorem.- 29. Projects.- Appendix.- References.- Index.
"Sinopsis" puede pertenecer a otra edición de este libro.
(Ningún ejemplar disponible)
Buscar: Crear una petición¿No encuentra el libro que está buscando? Seguiremos buscando por usted. Si alguno de nuestros vendedores lo incluye en IberLibro, le avisaremos.
Crear una petición