Advances of cardiovascular engineering prompt one to consider innovative device technology - that is, the development of new replacement heart valves or engineering of a totally implantable energy source for an artificial heart. However, these kinds of advances have often proved unable to achieve a long-lasting benefit as the cardiovascular field has matured so fast. Cardiovascular engineering has matured to the point where a major innovation must not only function, but must continuously function better than existing devices. This is difficult to accomplish in the complex cardiovasculature system, in which energy source, biocompatibility, compliance, and functionality all must be considered. The maturation of the field is evident from the fact that many engineered prosthetic systems perform well - for example, heart valves function for long periods of time, large-vessel vascular grafts are quite adequate, extracorporeal membrane oxygenation has significantly prolonged the feasible length of heart bypass and other surgical operations, and total artificial hearts can be used as a bridge to transplant without serious complications, yet none of these systems is as good as the natural ones it replaces. The reasons for this are many and incompletely understood. The next stage of progress must be better to alterations understandings of the various components of vasculature and their response by our devices, be they at the micro- or macro-circulatory levels, in the blood, or associated with the vascular wall.
"Sinopsis" puede pertenecer a otra edición de este libro.
Advances of cardiovascular engineering prompt one to consider innovative device technology - that is, the development of new replacement heart valves or engineering of a totally implantable energy source for an artificial heart. However, these kinds of advances have often proved unable to achieve a long-lasting benefit as the cardiovascular field has matured so fast. Cardiovascular engineering has matured to the point where a major innovation must not only function, but must continuously function better than existing devices. This is difficult to accomplish in the complex cardiovasculature system, in which energy source, biocompatibility, compliance, and functionality all must be considered. The maturation of the field is evident from the fact that many engineered prosthetic systems perform well - for example, heart valves function for long periods of time, large-vessel vascular grafts are quite adequate, extracorporeal membrane oxygenation has significantly prolonged the feasible length of heart bypass and other surgical operations, and total artificial hearts can be used as a bridge to transplant without serious complications, yet none of these systems is as good as the natural ones it replaces. The reasons for this are many and incompletely understood. The next stage of progress must be better to alterations understandings of the various components of vasculature and their response by our devices, be they at the micro- or macro-circulatory levels, in the blood, or associated with the vascular wall.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 29,71 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Proceedings of a NATO ASI held in Malaga, Spain, December 4-14, 1991. Advances of cardiovascular engineering prompt one to consider innovative device technology - that is, the development of new replacement heart valves or engineering of a totally impl. Nº de ref. del artículo: 4173679
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Advances of cardiovascular engineering prompt one to consider innovative device technology - that is, the development of new replacement heart valves or engineering of a totally implantable energy source for an artificial heart. However, these kinds of advances have often proved unable to achieve a long-lasting benefit as the cardiovascular field has matured so fast. Cardiovascular engineering has matured to the point where a major innovation must not only function, but must continuously function better than existing devices. This is difficult to accomplish in the complex cardiovasculature system, in which energy source, biocompatibility, compliance, and functionality all must be considered. The maturation of the field is evident from the fact that many engineered prosthetic systems perform well - for example, heart valves function for long periods of time, large-vessel vascular grafts are quite adequate, extracorporeal membrane oxygenation has significantly prolonged the feasible length of heart bypass and other surgical operations, and total artificial hearts can be used as a bridge to transplant without serious complications, yet none of these systems is as good as the natural ones it replaces. The reasons for this are many and incompletely understood. The next stage of progress must be better to alterations understandings of the various components of vasculature and their response by our devices, be they at the micro- or macro-circulatory levels, in the blood, or associated with the vascular wall. 456 pp. Englisch. Nº de ref. del artículo: 9781441932280
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781441932280_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Advances of cardiovascular engineering prompt one to consider innovative device technology - that is, the development of new replacement heart valves or engineering of a totally implantable energy source for an artificial heart. However, these kinds of advances have often proved unable to achieve a long-lasting benefit as the cardiovascular field has matured so fast. Cardiovascular engineering has matured to the point where a major innovation must not only function, but must continuously function better than existing devices. This is difficult to accomplish in the complex cardiovasculature system, in which energy source, biocompatibility, compliance, and functionality all must be considered. The maturation of the field is evident from the fact that many engineered prosthetic systems perform well - for example, heart valves function for long periods of time, large-vessel vascular grafts are quite adequate, extracorporeal membrane oxygenation has significantly prolonged the feasible length of heart bypass and other surgical operations, and total artificial hearts can be used as a bridge to transplant without serious complications, yet none of these systems is as good as the natural ones it replaces. The reasons for this are many and incompletely understood. The next stage of progress must be better to alterations understandings of the various components of vasculature and their response by our devices, be they at the micro- or macro-circulatory levels, in the blood, or associated with the vascular wall. Nº de ref. del artículo: 9781441932280
Cantidad disponible: 1 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9781441932280
Cantidad disponible: 10 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Advances of cardiovascular engineering prompt one to consider innovative device technology - that is, the development of new replacement heart valves or engineering of a totally implantable energy source for an artificial heart. However, these kinds of advances have often proved unable to achieve a long-lasting benefit as the cardiovascular field has matured so fast. Cardiovascular engineering has matured to the point where a major innovation must not only function, but must continuously function better than existing devices. This is difficult to accomplish in the complex cardiovasculature system, in which energy source, biocompatibility, compliance, and functionality all must be considered. The maturation of the field is evident from the fact that many engineered prosthetic systems perform well - for example, heart valves function for long periods of time, large-vessel vascular grafts are quite adequate, extracorporeal membrane oxygenation has significantly prolonged the feasible length of heart bypass and other surgical operations, and total artificial hearts can be used as a bridge to transplant without serious complications, yet none of these systems is as good as the natural ones it replaces. The reasons for this are many and incompletely understood. The next stage of progress must be better to alterations understandings of the various components of vasculature and their response by our devices, be they at the micro- or macro-circulatory levels, in the blood, or associated with the vascular wall.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 456 pp. Englisch. Nº de ref. del artículo: 9781441932280
Cantidad disponible: 2 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 879. Nº de ref. del artículo: C9781441932280
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 452. Nº de ref. del artículo: 263076978
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 452. Nº de ref. del artículo: 5852333
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 452. Nº de ref. del artículo: 183076984
Cantidad disponible: 4 disponibles