This book provides an introduction to the Bayesian approach to statistical analysis of data, written at a level that is accessible to a social science audience. The book covers the Bayesian approach from model development through the development and implementation of programs to estimate the model, through summation and interpretation of the output. The first part provides a detailed introduction to mathematical statistics and the Bayesian approach to statistics, as well as a thorough explanation of the rationale for using simulation methods to construct summaries of posterior distributions. Markov chain Monte Carlo (MCMC) methods—including the Gibbs sampler and the Metropolis-Hastings algorithm—are then introduced as general methods for simulating samples from distributions. Extensive discussion of programming Markov chain Monte Carlo algorithms, monitoring their performance, and improving them is provided before turning to the larger examples involving real social science models and data.
"Sinopsis" puede pertenecer a otra edición de este libro.
Introduction to Applied Bayesian Statistics and Estimation for Social Scientists covers the complete process of Bayesian statistical analysis in great detail from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models that are most commonly used in social science research, including the linear regression model, generalized linear models, hierarchical models, and multivariate regression models, and it thoroughly develops each real-data example in painstaking detail.
The first part of the book provides a detailed introduction to mathematical statistics and the Bayesian approach to statistics, as well as a thorough explanation of the rationale for using simulation methods to construct summaries of posterior distributions. Markov chain Monte Carlo (MCMC) methods including the Gibbs sampler and the Metropolis-Hastings algorithm are then introduced as general methods for simulating samples from distributions. Extensive discussion of programming MCMC algorithms, monitoring their performance, and improving them is provided before turning to the larger examples involving real social science models and data.
Scott M. Lynch is an associate professor in the Department of Sociology and Office of Population Research at Princeton University. His substantive research interests are in changes in racial and socioeconomic inequalities in health and mortality across age and time. His methodological interests are in the use of Bayesian stastistics in sociology and demography generally and in multistate life table methodology specifically.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 30,37 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 26,03 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: SecondSale, Montgomery, IL, Estados Unidos de America
Condición: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00057875181
Cantidad disponible: 1 disponibles
Librería: thebookforest.com, San Rafael, CA, Estados Unidos de America
Condición: LikeNew. Text block, wraps and binding are in fine, like new condition. Absolutely no markings of any kind. Well packaged and promptly shipped from California. US veteran operated. Nº de ref. del artículo: 1LAGBP001WFO
Cantidad disponible: 1 disponibles
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
Paperback. Condición: Fair. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported Softcover reprint of hardcover 1st ed. 2007. Nº de ref. del artículo: 1441924345-7-1
Cantidad disponible: 1 disponibles
Librería: Toscana Books, AUSTIN, TX, Estados Unidos de America
Paperback. Condición: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Nº de ref. del artículo: Scanned1441924345
Cantidad disponible: 1 disponibles
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
Paperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_331217158
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. First book written at an introductory level for social scientists interested in learning about MCMCThis book outlines Bayesian statistical analysis in great detail, from the development of a model through the process of making statistical inference. . Nº de ref. del artículo: 4172948
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781441924346_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -'Introduction to Applied Bayesian Statistics and Estimation for Social Scientists' covers the complete process of Bayesian statistical analysis in great detail from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models that are most commonly used in social science research - including the linear regression model, generalized linear models, hierarchical models, and multivariate regression models - and it thoroughly develops each real-data example in painstaking detail.The first part of the book provides a detailed introduction to mathematical statistics and the Bayesian approach to statistics, as well as a thorough explanation of the rationale for using simulation methods to construct summaries of posterior distributions. Markov chain Monte Carlo (MCMC) methods - including the Gibbs sampler and the Metropolis-Hastings algorithm - are then introduced as general methods for simulating samples from distributions. Extensive discussion of programming MCMC algorithms, monitoring their performance, and improving them is provided before turning to the larger examples involving real social science models and data. 388 pp. Englisch. Nº de ref. del artículo: 9781441924346
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - 'Introduction to Applied Bayesian Statistics and Estimation for Social Scientists' covers the complete process of Bayesian statistical analysis in great detail from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models that are most commonly used in social science research - including the linear regression model, generalized linear models, hierarchical models, and multivariate regression models - and it thoroughly develops each real-data example in painstaking detail.The first part of the book provides a detailed introduction to mathematical statistics and the Bayesian approach to statistics, as well as a thorough explanation of the rationale for using simulation methods to construct summaries of posterior distributions. Markov chain Monte Carlo (MCMC) methods - including the Gibbs sampler and the Metropolis-Hastings algorithm - are then introduced as general methods for simulating samples from distributions. Extensive discussion of programming MCMC algorithms, monitoring their performance, and improving them is provided before turning to the larger examples involving real social science models and data. Nº de ref. del artículo: 9781441924346
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 573. Nº de ref. del artículo: C9781441924346
Cantidad disponible: Más de 20 disponibles