This book presents methodology for analyzing data that cocur on multiple scales (for example, daily and monthly data, or data at zip code and state levels). This is the first such book to focus on the Bayesian approach, which allows straightforward incorporation of prior knowledge, as well as estimates of uncertainty. Two worked case studies provide detailed examples of these methods in practice.
"Sinopsis" puede pertenecer a otra edición de este libro.
A wide variety of processes occur on multiple scales, either naturally or as a consequence of measurement. This book contains methodology for the analysis of data that arise from such multiscale processes. The book brings together a number of recent developments and makes them accessible to a wider audience. Taking a Bayesian approach allows for full accounting of uncertainty, and also addresses the delicate issue of uncertainty at multiple scales. The Bayesian approach also facilitates the use of knowledge from prior experience or data, and these methods can handle different amounts of prior knowledge at different scales, as often occurs in practice.
The book is aimed at statisticians, applied mathematicians, and engineers working on problems dealing with multiscale processes in time and/or space, such as in engineering, finance, and environmetrics. The book will also be of interest to those working on multiscale computation research. The main prerequisites are knowledge of Bayesian statistics and basic Markov chain Monte Carlo methods. A number of real-world examples are thoroughly analyzed in order to demonstrate the methods and to assist the readers in applying these methods to their own work. To further assist readers, the authors are making source code (for R) available for many of the basic methods discussed herein.
Marco A. R. Ferreira is an Assistant Professor of Statistics at the University of Missouri, Columbia. Herbert K. H. Lee is an Associate Professor of Applied Mathematics and Statistics at the University of California, Santa Cruz, and authored the book Bayesian Nonparametrics via Neural Networks.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,25 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 7,65 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781441924261
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 11876309-n
Cantidad disponible: 15 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530294145
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. A wide variety of processes occur on multiple scales, either naturally or as a consequence of measurement. This book contains methodology for the analysis of data that arise from such multiscale processes. The book brings together a number of recent developments and makes them accessible to a wider audience. Taking a Bayesian approach allows for full accounting of uncertainty, and also addresses the delicate issue of uncertainty at multiple scales. The Bayesian approach also facilitates the use of knowledge from prior experience or data, and these methods can handle different amounts of prior knowledge at different scales, as often occurs in practice. A wide variety of processes occur on multiple scales, either naturally or as a consequence of measurement. The Bayesian approach also facilitates the use of knowledge from prior experience or data, and these methods can handle different amounts of prior knowledge at different scales, as often occurs in practice. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781441924261
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 11876309
Cantidad disponible: 15 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This highly useful book contains methodology for the analysis of data that arise from multiscale processes. It brings together a number of recent developments and makes them accessible to a wider audience. Taking a Bayesian approach allows for full accounting of uncertainty, and also addresses the delicate issue of uncertainty at multiple scales. These methods can handle different amounts of prior knowledge at different scales, as often occurs in practice. 260 pp. Englisch. Nº de ref. del artículo: 9781441924261
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Stochastic models for processes that live and can possibly be observed at different levels of resolutionThe models in this book allow different degrees of smoothness of the stochastic processes at the different levels of resolutionThe stati. Nº de ref. del artículo: 4172941
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 260. Nº de ref. del artículo: 263069690
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 260 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 5859621
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 260. Nº de ref. del artículo: 183069680
Cantidad disponible: 4 disponibles