Conics and Cubics is an accessible introduction to algebraic curves. Its focus on curves of degree at most three keeps results tangible and proofs transparent. Theorems follow naturally from high school algebra and two key ideas, homogeneous coordinates and intersection multiplicities.
By classifying irreducible cubics over the real numbers and proving that their points form Abelian groups, the book gives readers easy access to the study of elliptic curves. It includes a simple proof of Bezout’s Theorem on the number of intersections of two curves.
The book is a text for a one-semester course. The course can serve either as the one undergraduate geometry course taken by mathematics majors in general or as a sequel to college geometry for prospective or current teachers of secondary school mathematics. The only prerequisite is first-year calculus.
The new edition additionally discusses the use of power series to parametrize curves and analyze intersection multiplicities and envelopes.
"Sinopsis" puede pertenecer a otra edición de este libro.
Conics and Cubics is an accessible introduction to algebraic curves. Its focus on curves of degree at most three keeps results tangible and proofs transparent. Theorems follow naturally from high school algebra and two key ideas: homogenous coordinates and intersection multiplicities.
By classifying irreducible cubics over the real numbers and proving that their points form Abelian groups, the book gives readers easy access to the study of elliptic curves. It includes a simple proof of Bezout's Theorem on the number of intersections of two curves.
The book is a text for a one-semester course on algebraic curves for junior-senior mathematics majors. The only prerequisite is first-year calculus.
The new edition introduces the deeper study of curves through parametrization by power series. Two uses of parametrizations are presented: counting multiple intersections of curves and proving the duality of curves and their envelopes.
About the first edition:
"The book...belongs in the admirable tradition of laying the foundations of a difficult and potentially abstract subject by means of concrete and accessible examples."
- Peter Giblin, MathSciNet
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 3,20 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,40 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: HPB-Red, Dallas, TX, Estados Unidos de America
paperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_336510569
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530293950
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 12688334-n
Cantidad disponible: 15 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. Conics and Cubics is an accessible introduction to algebraic curves. Its focus on curves of degree at most three keeps results tangible and proofs transparent. Theorems follow naturally from high school algebra and two key ideas, homogeneous coordinates and intersection multiplicities.By classifying irreducible cubics over the real numbers and proving that their points form Abelian groups, the book gives readers easy access to the study of elliptic curves. It includes a simple proof of Bezouts Theorem on the number of intersections of two curves.The book is a text for a one-semester course. The course can serve either as the one undergraduate geometry course taken by mathematics majors in general or as a sequel to college geometry for prospective or current teachers of secondary school mathematics. The only prerequisite is first-year calculus.The new edition additionally discusses the use of power series to parametrize curves and analyze intersection multiplicities and envelopes. Theorems follow naturally from high school algebra and two key ideas, homogeneous coordinates and intersection multiplicities.By classifying irreducible cubics over the real numbers and proving that their points form Abelian groups, the book gives readers easy access to the study of elliptic curves. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781441921789
Cantidad disponible: 1 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Conics and Cubics: A Concrete Introduction to Algebraic Curves 1.1. Book. Nº de ref. del artículo: BBS-9781441921789
Cantidad disponible: 5 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781441921789
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781441921789
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 12688334
Cantidad disponible: 15 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781441921789_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Conics and Cubics offers an accessible and well illustrated introduction to algebraic curves. By classifying irreducible cubics over the real numbers and proving that their points form Abelian groups, the book gives readers easy access to the study of elliptic curves. It includes a simple proof of Bezout's Theorem on the number of intersections of two curves. The subject area is described by means of concrete and accessible examples. The book is a text for a one-semester course. 356 pp. Englisch. Nº de ref. del artículo: 9781441921789
Cantidad disponible: 2 disponibles