This book presents statistics and data science methods for risk analytics in quantitative finance and insurance. The book offers a non-technical introduction to four key areas in financial technology: artificial intelligence, blockchain, cloud computing, and big data analytics.
"Sinopsis" puede pertenecer a otra edición de este libro.
Tze Leung Lai is the Ray Lyman Wilbur Professor and Professor of Statistics at Stanford University. He received the COPSS Presidents' Award in 1983. He has published extensively on sequential statistical analysis and a wide range of applications in the biomedical sciences, engineering, and finance.
Haipeng Xing is a Professor of Applied Mathematics and Statistics at State University of New York, Stony Brook. His research interests include sequential statistical methods and its applications, econometrics, quantitative finance, and recursive methods in macroeconomics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,16 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents statistics and data science methods for risk analytics in quantitative finance and insurance. Part I covers the background, financial models, and data analytical methods for market risk, credit risk, and operational risk in financial instruments, as well as models of risk premium and insolvency in insurance contracts. Part II provides an overview of machine learning (including supervised, unsupervised, and reinforcement learning), Monte Carlo simulation, and sequential analysis techniques for risk analytics. In Part III, the book offers a non-technical introduction to four key areas in financial technology: artificial intelligence, blockchain, cloud computing, and big data analytics.Key Features:Provides a comprehensive and in-depth overview of data science methods for financial and insurance risks.Unravels bandits, Markov decision processes, reinforcement learning, and their interconnections.Promotes sequential surveillance and predictive analytics for abrupt changes in risk factors.Introduces the ABCDs of FinTech: Artificial intelligence, blockchain, cloud computing, and big data analytics.Includes supplements and exercises to facilitate deeper comprehension. 464 pp. Englisch. Nº de ref. del artículo: 9781439839485
Cantidad disponible: 2 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 861. Nº de ref. del artículo: B9781439839485
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 350 This item is printed on demand. Nº de ref. del artículo: 55095521
Cantidad disponible: 3 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 350 1st Edition. Nº de ref. del artículo: 2654464318
Cantidad disponible: 4 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781439839485
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781439839485_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book presents statistics and data science methods for risk analytics in quantitative finance and insurance. Part I covers the background, financial models, and data analytical methods for market risk, credit risk, and operational risk in financial instruments, as well as models of risk premium and insolvency in insurance contracts. Part II provides an overview of machine learning (including supervised, unsupervised, and reinforcement learning), Monte Carlo simulation, and sequential analysis techniques for risk analytics. In Part III, the book offers a non-technical introduction to four key areas in financial technology: artificial intelligence, blockchain, cloud computing, and big data analytics.Key Features:Provides a comprehensive and in-depth overview of data science methods for financial and insurance risks.Unravels bandits, Markov decision processes, reinforcement learning, and their interconnections.Promotes sequential surveillance and predictive analytics for abrupt changes in risk factors.Introduces the ABCDs of FinTech: Artificial intelligence, blockchain, cloud computing, and big data analytics.Includes supplements and exercises to facilitate deeper comprehension. Nº de ref. del artículo: 9781439839485
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 20156455-n
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 350. Nº de ref. del artículo: 1854464308
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Tze Leung Lai is a professor of statistics at Stanford University in California. Haipeng Xing is an assistant professor of applied mathematics and statistics at the State University of New York, Stony Brook.Tze Leung Lai is the R. Nº de ref. del artículo: 254938520
Cantidad disponible: Más de 20 disponibles