Writing this book, I had in my mind areader trying to get some knowledge of a part of the modern differential geometry. I concentrate myself on the study of sur faces in the Euclidean 3-space, this being the most natural object for investigation. The global differential geometry of surfaces in E3 is based on two classical results: (i) the ovaloids (i.e., closed surfaces with positive Gauss curvature) with constant Gauss or mean curvature are the spheres, (ü) two isometrie ovaloids are congruent. The results presented here show vast generalizations of these facts. Up to now, there is only one book covering this area of research: the Lecture Notes [3] written in the tensor slang. In my book, I am using the machinary of E. Cartan's calculus. It should be equivalent to the tensor calculus; nevertheless, using it I get better results (but, honestly, sometimes it is too complicated). It may be said that almost all results are new and belong to myself (the exceptions being the introductory three chapters, the few classical results and results of my post graduate student Mr. M. ÄFWAT who proved Theorems V.3.1, V.3.3 and VIII.2.1-6).
"Sinopsis" puede pertenecer a otra edición de este libro.
Writing this book, I had in my mind areader trying to get some knowledge of a part of the modern differential geometry. I concentrate myself on the study of sur faces in the Euclidean 3-space, this being the most natural object for investigation. The global differential geometry of surfaces in E3 is based on two classical results: (i) the ovaloids (i.e., closed surfaces with positive Gauss curvature) with constant Gauss or mean curvature are the spheres, (ü) two isometrie ovaloids are congruent. The results presented here show vast generalizations of these facts. Up to now, there is only one book covering this area of research: the Lecture Notes [3] written in the tensor slang. In my book, I am using the machinary of E. Cartan's calculus. It should be equivalent to the tensor calculus; nevertheless, using it I get better results (but, honestly, sometimes it is too complicated). It may be said that almost all results are new and belong to myself (the exceptions being the introductory three chapters, the few classical results and results of my post graduate student Mr. M. ÄFWAT who proved Theorems V.3.1, V.3.3 and VIII.2.1-6).
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,81 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 6,81 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781402003189
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530140936
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781402003189_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Writing this book, I had in my mind areader trying to get some knowledge of a part of the modern differential geometry. I concentrate myself on the study of sur faces in the Euclidean 3-space, this being the most natural object for investigation. The global differential geometry of surfaces in E3 is based on two classical results: (i) the ovaloids (i.e., closed surfaces with positive Gauss curvature) with constant Gauss or mean curvature are the spheres, (ü) two isometrie ovaloids are congruent. The results presented here show vast generalizations of these facts. Up to now, there is only one book covering this area of research: the Lecture Notes [3] written in the tensor slang. In my book, I am using the machinary of E. Cartan's calculus. It should be equivalent to the tensor calculus; nevertheless, using it I get better results (but, honestly, sometimes it is too complicated). It may be said that almost all results are new and belong to myself (the exceptions being the introductory three chapters, the few classical results and results of my post graduate student Mr. M. ÄFWAT who proved Theorems V.3.1, V.3.3 and VIII.2.1-6). 156 pp. Englisch. Nº de ref. del artículo: 9781402003189
Cantidad disponible: 2 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9781402003189
Cantidad disponible: 10 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 4091751
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 156. Nº de ref. del artículo: 262568522
Cantidad disponible: 4 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 540. Nº de ref. del artículo: C9781402003189
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 156 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 5279381
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 156. Nº de ref. del artículo: 182568512
Cantidad disponible: 4 disponibles