Artículos relacionados a Studies in Domain Decomposition: Multilevel Methods...

Studies in Domain Decomposition: Multilevel Methods and the Biharmonic Dirichlet Problem (Classic Reprint) - Tapa blanda

 
9781332201211: Studies in Domain Decomposition: Multilevel Methods and the Biharmonic Dirichlet Problem (Classic Reprint)

Sinopsis

Excerpt from Studies in Domain Decomposition: Multilevel Methods and the Biharmonic Dirichlet Problem

Multilevel methods, such as multigrid methods, are among the most efficient methods for linear equations arising from elliptic problems; cf. Hackbusch mccormick [38] and the references therein. Recently, with the increasing interest in parallel computation, several new multilevel methods have been developed; cf. Yserentant Bank, Dupont and Yserentant Bramble, Pasciak and Xu and Dryja and Widlund In this thesis, we give improved results for a class of multilevel methods by showing that the condition number of the iteration Operator grows at most linearly with the number of levels in general, and is bounded by a constant independent of the mesh sizes and the number of levels if the elliptic problem is Hz - regular. This is an improvement on Dryja and Widlund's results on a multilevel additive Schwarz method as well as Bramble, P-asciak and Ku's results on the bpx algorithm.

About the Publisher

Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com

This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Excerpt from Studies in Domain Decomposition: Multilevel Methods and the Biharmonic Dirichlet Problem

Multilevel methods, such as multigrid methods, are among the most efficient methods for linear equations arising from elliptic problems; cf. Hackbusch mccormick [38] and the references therein. Recently, with the increasing interest in parallel computation, several new multilevel methods have been developed; cf. Yserentant Bank, Dupont and Yserentant Bramble, Pasciak and Xu and Dryja and Widlund In this thesis, we give improved results for a class of multilevel methods by showing that the condition number of the iteration Operator grows at most linearly with the number of levels in general, and is bounded by a constant independent of the mesh sizes and the number of levels if the elliptic problem is Hz - regular. This is an improvement on Dryja and Widlund's results on a multilevel additive Schwarz method as well as Bramble, P-asciak and Ku's results on the bpx algorithm.

About the Publisher

Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com

This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.

Reseña del editor

Excerpt from Studies in Domain Decomposition, Vol. 255: Multilevel Methods and the Biharmonic Dirichlet Problem

A class of multilevel methods for second order problems is considered in the additive Schwarz framework. It is established that, in the general case, the condition number of the iterative operator grows at most linearly with the number of levels. The bound is independent of the mesh sizes and the number of levels under a regularity assumption. This is an improvement of a result by Dryja and Widlund on a multilevel additive Schwarz algorithm, and the theory given by Bramble, Pasciak and Xu for the BPX algorithm.

Additive Schwarz and iterative substructuring algorithms for the biharmonic equation are also considered. These are domain decomposition methods which have previously been developed extensively for second order elliptic problems by Bramble, Pasciak and Schatz, Dryja and Widlund and others.

Optimal convergence properties are established for additive Schwarz algorithms for the biharmonic equation discretized by certain conforming finite elements. The number of iterations for the iterative substructuring methods grows only as the logarithm of the number of degrees of freedom associated with a typical subregion. It is also demonstrateed that it is possible to simplify the basic algorithms. This leads to a decrease of the cost but not of the rate of convergence of the iterative methods. In the analysis, new tools are developed to deal with Hermitian elements. Certain new inequalities for discrete norms for finite element spaces are also used.

About the Publisher

Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com

This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Zustand: Hervorragend | Seiten:...
Ver este artículo

EUR 14,90 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 0,77 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

Resultados de la búsqueda para Studies in Domain Decomposition: Multilevel Methods...

Imagen de archivo

Xuejun Zhang
Publicado por Forgotten Books, 2019
ISBN 10: 1332201210 ISBN 13: 9781332201211
Nuevo PAP

Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: LW-9781332201211

Contactar al vendedor

Comprar nuevo

EUR 20,14
Convertir moneda
Gastos de envío: EUR 0,77
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen de archivo

Xuejun Zhang
Publicado por Forgotten Books, 2019
ISBN 10: 1332201210 ISBN 13: 9781332201211
Nuevo PAP

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: LW-9781332201211

Contactar al vendedor

Comprar nuevo

EUR 18,57
Convertir moneda
Gastos de envío: EUR 4,02
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen del vendedor

Xuejun Zhang
Publicado por Forgotten Books, 2018
ISBN 10: 1332201210 ISBN 13: 9781332201211
Nuevo Paperback
Impresión bajo demanda

Librería: Forgotten Books, London, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Print on Demand. This book explores multilevel methods for solving large-scale second-order elliptic problems. The author considers a class of multilevel methods in the additive Schwarz framework and establishes that under a regularity assumption, the condition number of the iterative operator grows at most linearly with the number of levels. The author extends this idea to the biharmonic Dirichlet problem, and constructs additive Schwarz algorithms for the biharmonic problem using various conforming finite element discretizations. The author establishes optimality and almost optimal convergence properties for the algorithms. The book is a valuable resource for researchers and graduate students in numerical analysis and scientific computing, especially those interested in domain decomposition methods for solving large-scale partial differential equations. This book is a reproduction of an important historical work, digitally reconstructed using state-of-the-art technology to preserve the original format. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in the book. print-on-demand item. Nº de ref. del artículo: 9781332201211_0

Contactar al vendedor

Comprar nuevo

EUR 16,16
Convertir moneda
Gastos de envío: EUR 11,54
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Xuejun Zhang
Publicado por Forgotten Books, 2015
ISBN 10: 1332201210 ISBN 13: 9781332201211
Antiguo o usado Tapa blanda

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Hervorragend. Zustand: Hervorragend | Seiten: 104 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 26074663/1

Contactar al vendedor

Comprar usado

EUR 16,31
Convertir moneda
Gastos de envío: EUR 14,90
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito