Using Hierarchical Temporal Memory for Detecting Anomalous Network Activity - Tapa blanda

Bonhoff, Gerod M.

 
9781288319954: Using Hierarchical Temporal Memory for Detecting Anomalous Network Activity

Sinopsis

This research is motivated by the creation of intelligently autonomous cybercraft to reside in the intangible environment of cyberspace and maintain domain superiority. Specifically, this paper offers 7 challenges to the development of such a cybercraft. The focus is analysis of the claims Hierarchical Temporal Memory (HTM). In particular, HTM theory claims to facilitate intelligence in machines via accurate predictions. It further claims to be able to make accurate predictions of unusual worlds, like cyberspace. The primary objective is to provide evidence that HTM facilitates accurate predictions of unusual worlds. The second objective is to lend evidence that prediction is a good indication of intelligence. A commercial implementation of HTM theory is tested as an anomaly detection system and its ability to define network traffic (a major aspect of cyberspace) as benign or malicious is evaluated. Through the course of testing the performance of this implementation is poor. An independent algorithm is developed from a variant understanding of HTM theory. This alternate algorithm is independent of cyberspace and developed solely (but also in a contrived abstract world) to lend credibility to the use of prediction as a method of testing intelligence.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

This research is motivated by the creation of intelligently autonomous cybercraft to reside in the intangible environment of cyberspace and maintain domain superiority. Specifically, this paper offers 7 challenges to the development of such a cybercraft. The focus is analysis of the claims Hierarchical Temporal Memory (HTM). In particular, HTM theory claims to facilitate intelligence in machines via accurate predictions. It further claims to be able to make accurate predictions of unusual worlds, like cyberspace. The primary objective is to provide evidence that HTM facilitates accurate predictions of unusual worlds. The second objective is to lend evidence that prediction is a good indication of intelligence. A commercial implementation of HTM theory is tested as an anomaly detection system and its ability to define network traffic (a major aspect of cyberspace) as benign or malicious is evaluated. Through the course of testing the performance of this implementation is poor. An independent algorithm is developed from a variant understanding of HTM theory. This alternate algorithm is independent of cyberspace and developed solely (but also in a contrived abstract world) to lend credibility to the use of prediction as a method of testing intelligence.

"Sobre este título" puede pertenecer a otra edición de este libro.

Otras ediciones populares con el mismo título

9781025126357: Using Hierarchical Temporal Memory for Detecting Anomalous Network Activity

Edición Destacada

ISBN 10:  1025126351 ISBN 13:  9781025126357
Editorial: Hutson Street Press, 2025
Tapa blanda