An expected requirement of wireless sensor networks (WSN) is the support of a vast number of users while permitting limited access privileges. While WSN nodes have severe resource constraints, WSNs will need to restrict access to data, enforcing security policies to protect data within WSNs. To date, WSN security has largely been based on encryption and authentication schemes. WSN Authorization Specification Language (WASL) is specified and implemented using tools coded in JavaTM. WASL is a mechanism-independent policy language that can specify arbitrary, composable security policies. The construction, hybridization, and composition of well-known security models is demonstrated and shown to preserve security while providing for modifications to permit inter-network accesses with no more impact on the WSN nodes than any other policy update. Using WASL and a naive data compression scheme, a multi-level security policy for a 1000-node network requires 66 bytes of memory per node. This can reasonably be distributed throughout a WSN. The compilation of a variety of policy compositions are shown to be feasible using a notebook-class computer like that expected to be performing typical WSN management responsibilities.
"Sinopsis" puede pertenecer a otra edición de este libro.
An expected requirement of wireless sensor networks (WSN) is the support of a vast number of users while permitting limited access privileges. While WSN nodes have severe resource constraints, WSNs will need to restrict access to data, enforcing security policies to protect data within WSNs. To date, WSN security has largely been based on encryption and authentication schemes. WSN Authorization Specification Language (WASL) is specified and implemented using tools coded in JavaTM. WASL is a mechanism-independent policy language that can specify arbitrary, composable security policies. The construction, hybridization, and composition of well-known security models is demonstrated and shown to preserve security while providing for modifications to permit inter-network accesses with no more impact on the WSN nodes than any other policy update. Using WASL and a naive data compression scheme, a multi-level security policy for a 1000-node network requires 66 bytes of memory per node. This can reasonably be distributed throughout a WSN. The compilation of a variety of policy compositions are shown to be feasible using a notebook-class computer like that expected to be performing typical WSN management responsibilities.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781288313709
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781288313709
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781288313709
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781288313709_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. KlappentextrnrnAn expected requirement of wireless sensor networks (WSN) is the support of a vast number of users while permitting limited access privileges. While WSN nodes have severe resource constraints, WSNs will need to restrict access to . Nº de ref. del artículo: 6554947
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Neuware - An expected requirement of wireless sensor networks (WSN) is the support of a vast number of users while permitting limited access privileges. While WSN nodes have severe resource constraints, WSNs will need to restrict access to data, enforcing security policies to protect data within WSNs. To date, WSN security has largely been based on encryption and authentication schemes. WSN Authorization Specification Language (WASL) is specified and implemented using tools coded in JavaTM. WASL is a mechanism-independent policy language that can specify arbitrary, composable security policies. The construction, hybridization, and composition of well-known security models is demonstrated and shown to preserve security while providing for modifications to permit inter-network accesses with no more impact on the WSN nodes than any other policy update. Using WASL and a naive data compression scheme, a multi-level security policy for a 1000-node network requires 66 bytes of memory per node. This can reasonably be distributed throughout a WSN. The compilation of a variety of policy compositions are shown to be feasible using a notebook-class computer like that expected to be performing typical WSN management responsibilities. Nº de ref. del artículo: 9781288313709
Cantidad disponible: 2 disponibles