# Mathematical identities: Euler's identity, List of logarithmic identities, Commutator, List of trigonometric identities, Capelli's identity

## Source: Wikipedia

Ver todas las copias de esta edición ISBN.

Reseña del editor:

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Pages: 48. Chapters: Euler's identity, List of logarithmic identities, Commutator, List of trigonometric identities, Capelli's identity, Newton's identities, Differentiation rules, Vector calculus identities, Pythagorean trigonometric identity, Lagrange's identity, Polarization identity, Abel's identity, Vector algebra relations, Squared triangular number, Polynomial identity ring, Liouville's formula, Tangent half-angle formula, Dyson conjecture, Brahmagupta-Fibonacci identity, Vandermonde's identity, Weitzenböck identity, Jacobi triple product, Green's identities, Euler's four-square identity, Pascal's rule, Binet-Cauchy identity, Difference of two squares, Rogers-Ramanujan continued fraction, Jacobi identity, Dixon's identity, Degen's eight-square identity, Lerche-Newberger sum rule, Sun's curious identity, Rogers-Ramanujan identities, Enumerator polynomial, Retkes identities, Noether identities, Jacobi-Anger expansion, Morrie's law, Fierz identity, Cassini and Catalan identities, Maximum-minimums identity, Heine's identity, Lewis Carroll identity, Sommerfeld identity, Q-Vandermonde identity, Picone identity, Bochner identity, List of mathematical identities, Hermite's identity, Cyclotomic identity, Rothe-Hagen identity, Fibonacci's identity. Excerpt: In mathematics, trigonometric identities are equalities that involve trigonometric functions and are true for every single value of the occurring variables. Geometrically, these are identities involving certain functions of one or more angles. These are distinct from triangle identities, which are identities involving both angles and side lengths of a triangle. Only the former are covered in this article. These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a ...

"Sobre este título" puede pertenecer a otra edición de este libro.

(Ningún ejemplar disponible)

Buscar:

Crear una petición

Si conoce el autor y el título del libro pero no lo encuentra en IberLibro, nosotros podemos buscarlo por usted e informarle por e-mail en cuanto el libro esté disponible en nuestras páginas web.

Crear una petición