Zeroing Neural Networks
Describes the theoretical and practical aspects of finite-time ZNN methods for solving an array of computational problems
Zeroing Neural Networks (ZNN) have become essential tools for solving discretized sensor-driven time-varying matrix problems in engineering, control theory, and on-chip applications for robots. Building on the original ZNN model, finite-time zeroing neural networks (FTZNN) enable efficient, accurate, and predictive real-time computations. Setting up discretized FTZNN algorithms for different time-varying matrix problems requires distinct steps.
Zeroing Neural Networks provides in-depth information on the finite-time convergence of ZNN models in solving computational problems. Divided into eight parts, this comprehensive resource covers modeling methods, theoretical analysis, computer simulations, nonlinear activation functions, and more. Each part focuses on a specific type of time-varying computational problem, such as the application of FTZNN to the Lyapunov equation, linear matrix equation, and matrix inversion. Throughout the book, tables explain the performance of different models, while numerous illustrative examples clarify the advantages of each FTZNN method. In addition, the book:
Zeroing Neural Networks: Finite-time Convergence Design, Analysis and Applications is an essential resource for scientists, researchers, academic lecturers, and postgraduates in the field, as well as a valuable reference for engineers and other practitioners working in neurocomputing and intelligent control.
"Sinopsis" puede pertenecer a otra edición de este libro.
LIN XIAO, PhD, is a Professor in the College of Information Science and Engineering at Hunan Normal University, Changsha, China. He has authored more than 100 papers in international conferences and journals, including IEEE-TCYB, IEEE-TII, IEEE-TSMCS. Professor Xiao is Associate Editor of IEEE-TNNLS.
LEI JIA is a PhD degree candidate in Operations Research and Control in the College of Mathematics and Statistics at Hunan Normal University, Changsha, China. She has authored or co-authored more than 20 scientific articles, including 13 IEEE-transaction papers.
Describes the theoretical and practical aspects of finite-time ZNN methods for solving an array of computational problems
Zeroing Neural Networks (ZNN) have become essential tools for solving discretized sensor-driven time-varying matrix problems in engineering, control theory, and on-chip applications for robots. Building on the original ZNN model, finite-time zeroing neural networks (FTZNN) enable efficient, accurate, and predictive real-time computations. Setting up discretized FTZNN algorithms for different time-varying matrix problems requires distinct steps.
Zeroing Neural Networks provides in-depth information on the finite-time convergence of ZNN models in solving computational problems. Divided into eight parts, this comprehensive resource covers modeling methods, theoretical analysis, computer simulations, nonlinear activation functions, and more. Each part focuses on a specific type of time-varying computational problem, such as the application of FTZNN to the Lyapunov equation, linear matrix equation, and matrix inversion. Throughout the book, tables explain the performance of different models, while numerous illustrative examples clarify the advantages of each FTZNN method. In addition, the book:
Zeroing Neural Networks: Finite-time Convergence Design, Analysis and Applications is an essential resource for scientists, researchers, academic lecturers, and postgraduates in the field, as well as a valuable reference for engineers and other practitioners working in neurocomputing and intelligent control.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,90 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 4,72 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Studibuch, Stuttgart, Alemania
hardcover. Condición: Gut. 432 Seiten; 9781119985990.3 Gewicht in Gramm: 1. Nº de ref. del artículo: 507693
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781119985990_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9781119985990
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9781119985990
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. LIN XIAO, PhD, is a Professor in the College of Information Science and Engineering at Hunan Normal University, Changsha, China. He has authored more than 100 papers in international conferences and journals, including IEEE-TCYB, IEEE-TII, IEEE-TSMCS. Profe. Nº de ref. del artículo: 592188307
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 44428866-n
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Hardcover. Condición: new. Hardcover. Zeroing Neural Networks Describes the theoretical and practical aspects of finite-time ZNN methods for solving an array of computational problems Zeroing Neural Networks (ZNN) have become essential tools for solving discretized sensor-driven time-varying matrix problems in engineering, control theory, and on-chip applications for robots. Building on the original ZNN model, finite-time zeroing neural networks (FTZNN) enable efficient, accurate, and predictive real-time computations. Setting up discretized FTZNN algorithms for different time-varying matrix problems requires distinct steps. Zeroing Neural Networks provides in-depth information on the finite-time convergence of ZNN models in solving computational problems. Divided into eight parts, this comprehensive resource covers modeling methods, theoretical analysis, computer simulations, nonlinear activation functions, and more. Each part focuses on a specific type of time-varying computational problem, such as the application of FTZNN to the Lyapunov equation, linear matrix equation, and matrix inversion. Throughout the book, tables explain the performance of different models, while numerous illustrative examples clarify the advantages of each FTZNN method. In addition, the book: Describes how to design, analyze, and apply FTZNN models for solving computational problems Presents multiple FTZNN models for solving time-varying computational problems Details the noise-tolerance of FTZNN models to maximize the adaptability of FTZNN models to complex environments Includes an introduction, problem description, design scheme, theoretical analysis, illustrative verification, application, and summary in every chapter Zeroing Neural Networks: Finite-time Convergence Design, Analysis and Applications is an essential resource for scientists, researchers, academic lecturers, and postgraduates in the field, as well as a valuable reference for engineers and other practitioners working in neurocomputing and intelligent control. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781119985990
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44428866
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44428866
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 44428866-n
Cantidad disponible: Más de 20 disponibles