Detect fraud earlier to mitigate loss and prevent cascading damage
Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution. Early detection is a key factor in mitigating fraud damage, but it involves more specialized techniques than detecting fraud at the more advanced stages. This invaluable guide details both the theory and technical aspects of these techniques, and provides expert insight into streamlining implementation. Coverage includes data gathering, preprocessing, model building, and post-implementation, with comprehensive guidance on various learning techniques and the data types utilized by each. These techniques are effective for fraud detection across industry boundaries, including applications in insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and more, giving you a highly practical framework for fraud prevention.
It is estimated that a typical organization loses about 5% of its revenue to fraud every year. More effective fraud detection is possible, and this book describes the various analytical techniques your organization must implement to put a stop to the revenue leak.
The longer fraud is allowed to go on, the more harm it causes. It expands exponentially, sending ripples of damage throughout the organization, and becomes more and more complex to track, stop, and reverse. Fraud prevention relies on early and effective fraud detection, enabled by the techniques discussed here. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques helps you stop fraud in its tracks, and eliminate the opportunities for future occurrence.
"Sinopsis" puede pertenecer a otra edición de este libro.
BART BAESENS is a full professor at KU Leuven, and a lecturer at the University of Southampton. He has done extensive research on analytics, customer relationship management, web analytics, fraud detection, and credit risk management. He regularly advises and provides consulting support to international firms with respect to their analytics and credit risk management strategy.
VÉRONIQUE VAN VLASSELAER is a PhD researcher in the Department of Decision Sciences and Information Management at KU Leuven. Her research focuses on the development of new techniques for fraud detection by combining predictive and network analytics.
WOUTER VERBEKE is an assistant professor at Vrije Universiteit Brussel (Brussels, Belgium). His research is situated in the field of predictive analytics and complex network analysis with applications in fraud, marketing, credit risk, human resources management, and mobility.
THE DEFINITIVE GUIDE TO THE DETECTION AND PREVENTION OF FRAUD THROUGH DATA ANALYTICS
Catch fraud early! Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques shows you how with a thorough overview of how to prevent losses and recover quickly as well as the security issues you need to address now. Exploring how auditors, corporate security prevention managers, and fraud prevention professionals can stay one step ahead of cyber criminals, this book addresses the different types of analytics in detecting fraud, including descriptive analytics, predictive analytics, and social network analysis.
Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques offers a current, state-of-the-art detection and prevention methodology, describing the data necessary to detect fraud. Taking you from the basics of fraud detection data analytics, through advanced pattern recognition methodology, to cutting-edge social network analysis and fraud ring detection, this book presents essential coverage of:
Insightful and clearly written, this hands-on guide reveals what you need to know about fraud analytics and the secret to putting historical data to work in the fight against fraud.
The sooner fraud detection occurs the betteras the likelihood of further losses is lower, potential recoveries are higher, and security issues can be addressed more rapidly. Catching fraud in an early stage, though, is more difficult than detecting it later, and requires specific techniques. Packed with numerous real-world examples, Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques authoritatively shows you how to put historical data to work against fraud.
Authors Bart Baesens, Véronique Van Vlasselaer, and Wouter Verbeke expertly discuss the use of unsupervised learning, supervised learning, and social network learning using techniques across a wide variety of fraud applications, such as insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, and tax evasion. This book provides the essential guidance you need to examine fraud patterns from historical data in order to detect fraud early in the process.
Providing a clear look at the pivotal role analytics plays in managing fraud, this book includes straightforward guidance on:
Read Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques for a comprehensive overview of fraud detection analytical techniques and implementation guidance for an effective fraud prevention solution that works for your organization.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
hardcover. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_448989222
Cantidad disponible: 1 disponibles
Librería: World of Books (was SecondSale), Montgomery, IL, Estados Unidos de America
Condición: Good. Good condition ex-library book with usual library markings and stickers. Nº de ref. del artículo: 00092543601
Cantidad disponible: 1 disponibles
Librería: Patrico Books, Apollo Beach, FL, Estados Unidos de America
hardcover. Condición: Good. Ships Out Tomorrow! Nº de ref. del artículo: 240507013
Cantidad disponible: 1 disponibles
Librería: Harry Alter, Sylva, NC, Estados Unidos de America
hardcover, Condición: Very Good, Wiley, NY, c.2015, 1st., 8vo., hardcover, 367pp., VG+/VG+ $. Nº de ref. del artículo: 99175
Cantidad disponible: 1 disponibles
Librería: WorldofBooks, Goring-By-Sea, WS, Reino Unido
Paperback. Condición: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Nº de ref. del artículo: GOR010804986
Cantidad disponible: 2 disponibles
Librería: AwesomeBooks, Wallingford, Reino Unido
Hardcover. Condición: Very Good. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection (Wiley and SAS Business Series) This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. Nº de ref. del artículo: 7719-9781119133124
Cantidad disponible: 2 disponibles
Librería: TextbookRush, Grandview Heights, OH, Estados Unidos de America
Condición: Good. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy. Nº de ref. del artículo: 53265664
Cantidad disponible: 1 disponibles
Librería: Bahamut Media, Reading, Reino Unido
Hardcover. Condición: Very Good. Shipped within 24 hours from our UK warehouse. Clean, undamaged book with no damage to pages and minimal wear to the cover. Spine still tight, in very good condition. Remember if you are not happy, you are covered by our 100% money back guarantee. Nº de ref. del artículo: 6545-9781119133124
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 23681076-n
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Hardback or Cased Book. Condición: New. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection. Book. Nº de ref. del artículo: BBS-9781119133124
Cantidad disponible: 5 disponibles