Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff–Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff–Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians.
"Sinopsis" puede pertenecer a otra edición de este libro.
Devdatt P. Dubhashi is Professor in the Department of Computer Science and Engineering at Chalmers University, Sweden. He earned a Ph.D. in computer science from Cornell University and held positions at the Max-Planck-Institute for Computer Science in Saarbruecken, BRICS, the University of Aarhus and IIT Delhi. Dubhashi has published widely at international conferences and in journals, including many special issues dedicated to best contributions. His research interests span the range from combinatorics to probabilistic analysis of algorithms, and more recently, to computational systems biology and distributed information systems such as the Web.
Alessandro Panconesi is Professor of Computer Science at Sapienza University of Rome. He earned a Ph.D. in computer science from Cornell University and is the recipient of the 1992 ACM Danny Lewin Award. Panconesi has published more than 50 papers in international journals and selective conference proceedings and he is the associate editor of the Journal of Discrete Algorithms and the director of BiCi, the Bertinoro International Center of Informatics. His research spans areas of algorithmic research as diverse as randomized algorithms, distributed computing, complexity theory, experimental algorithmics, wireless networking and Web information retrieval.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: DB-9781107606609
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: DB-9781107606609
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2317530272281
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 15949567-n
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781107606609
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 15949567
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the ChernoffHoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as ChernoffHoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians. This book presents a coherent and unified account of classical and more advanced techniques for analyzing the performance of randomized algorithms. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781107606609
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 216 pages. 8.90x5.90x0.70 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __1107606608
Cantidad disponible: 1 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff-Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff-Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians. Nº de ref. del artículo: LU-9781107606609
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781107606609_new
Cantidad disponible: Más de 20 disponibles