Learn how to build end-to-end scalable machine learning solutions with Apache Spark. With this practical guide, author Adi Polak introduces data and ML practitioners to creative solutions that supersede today's traditional methods. You'll learn a more holistic approach that takes you beyond specific requirements and organizational goals--allowing data and ML practitioners to collaborate and understand each other better.
Scaling Machine Learning with Spark examines several technologies for building end-to-end distributed ML workflows based on the Apache Spark ecosystem with Spark MLlib, MLflow, TensorFlow, and PyTorch. If you're a data scientist who works with machine learning, this book shows you when and why to use each technology.
You will:
"Sinopsis" puede pertenecer a otra edición de este libro.
As Vice President of Developer Experience at Treeverse, Adi Polak shapes the future of data & ML technologies for hands-on builders. She also contributes to the lakeFS open-source, a git-like interface for object stores. In her work, Adi brings her vast industry research and engineering experience to bear in educating and helping teams design, architect, and build cost-effective data systems and machine learning pipelines that emphasize scalability, expertise, and business goals. Adi is a frequent worldwide presenter and the author of O'Reilly's upcoming book, "Machine Learning With Apache Spark." She is continually an invited member of multiple program committees and advisor for conferences like Data & AI Summit, Scale by the Bay, and others. Previously, Adi was a senior manager for Azure at Microsoft, where she focused on building advanced analytics systems and modern architectures. When Adi isn't building data pipelines or thinking up new software architecture, you can find her on the local cultural scene or at the beach.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: HPB-Diamond, Dallas, TX, Estados Unidos de America
paperback. Condición: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_450564517
Cantidad disponible: 1 disponibles
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
paperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_430775295
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 44652266-n
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Scaling Machine Learning with Spark: Distributed ML with Mllib, Tensorflow, and Pytorch. Book. Nº de ref. del artículo: BBS-9781098106829
Cantidad disponible: 5 disponibles
Librería: Lakeside Books, Benton Harbor, MI, Estados Unidos de America
Condición: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Nº de ref. del artículo: OTF-S-9781098106829
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44652266
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Learn how to build end-to-end scalable machine learning solutions with Apache Spark. With this practical guide, author Adi Polak introduces data and ML practitioners to creative solutions that supersede today's traditional methods. You'll learn a more holistic approach that takes you beyond specific requirements and organizational goals--allowing data and ML practitioners to collaborate and understand each other better.Scaling Machine Learning with Spark examines several technologies for building end-to-end distributed ML workflows based on the Apache Spark ecosystem with Spark MLlib, MLflow, TensorFlow, and PyTorch. If you're a data scientist who works with machine learning, this book shows you when and why to use each technology.You will:Explore machine learning, including distributed computing concepts and terminologyManage the ML lifecycle with MLflowIngest data and perform basic preprocessing with SparkExplore feature engineering, and use Spark to extract featuresTrain a model with MLlib and build a pipeline to reproduce itBuild a data system to combine the power of Spark with deep learningGet a step-by-step example of working with distributed TensorFlowUse PyTorch to scale machine learning and its internal architecture. Nº de ref. del artículo: LU-9781098106829
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781098106829
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9781098106829
Cantidad disponible: 4 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9781098106829
Cantidad disponible: 4 disponibles