Artículos relacionados a Hierarchical Modeling and Analysis for Spatial Data...

Hierarchical Modeling and Analysis for Spatial Data (Chapman & Hall/CRC Monographs on Statistics and Applied Probability) - Tapa dura

 
9781032508559: Hierarchical Modeling and Analysis for Spatial Data (Chapman & Hall/CRC Monographs on Statistics and Applied Probability)

Sinopsis

Hierarchical Modeling and Analysis for Spatial Data, Third Edition is the latest edition of this popular and authoritative text on Bayesian modeling and inference for spatial and spatial-temporal data. The text presents a comprehensive and up-to-date treatment of hierarchical and multilevel modeling for spatial and spatio-temporal data within a Bayesian framework. Over the past decade since the second edition, spatial statistics has evolved significantly driven by an explosion in data availability and advances in Bayesian computation. This edition reflects those changes, introducing new methods, expanded applications, and enhanced computational resources to support researchers and practitioners across disciplines, including environmental science, ecology, and public health.

Key features of the third edition:

  • A dedicated chapter on state-of-the-art Bayesian modeling of large spatial and spatio-temporal datasets
  • Two new chapters on spatial point pattern analysis, covering both foundational and Bayesian perspectives
  • A new chapter on spatial data fusion, integrating diverse spatial data sources from different probabilistic mechanisms
  • An accessible introduction to GPS mapping, geodesic distances, and mathematical cartography
  • An expanded special topics chapter, including spatial challenges with finite population modeling and spatial directional data
  • A thoroughly revised chapter on Bayesian inference, featuring an updated review of modern computational techniques
  • A dedicated GitHub repository providing R programs and solutions to selected exercises, ensuring continued access to evolving software developments

With refreshed content throughout, this edition serves as an essential reference for statisticians, data scientists, and researchers working with spatial data. Graduate students and professionals seeking a deep understanding of Bayesian spatial modeling will find this volume an invaluable resource for both theory and practice.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Alan E. Gelfand is The James B Duke Professor Emeritus of Statistical Science at Duke University. He also enjoys a secondary appointment as Professor of Environmental Science and Policy in the Nicholas School. Author of more than 330 papers and 6 books, Gelfand is internationally known for his contributions to applied statistics, Bayesian computation and Bayesian inference. For the past thirty years, Gelfand’s primary research focus has been in the area of statistical modeling for spatial and space-time data. He has advanced methodology, using the Bayesian paradigm, to associate fully model-based inference with spatial and space-time data. His chief areas of application include spatio-temporal environmental and ecological processes.

Sudipto Banerjee is Professor of Biostatistics and Senior Associate Dean for Academic Programs in the Fielding School of Public Health at the University of California, Los Angeles (UCLA). He holds joint appointments as a Professor in the UCLA Department of Statistics and Data Science and as an Affiliate faculty in the UCLA Institute of Environment and Sustainability. Banerjee has authored over 200 research articles, 2 textbooks, 2 committee reports for the National Research Council of the National Academies, and an edited handbook on spatial epidemiology. Banerjee is well-known for his research expertise and methodological advancements in Bayesian hierarchical modeling and inference for spatial-temporal data; theoretical and computational developments for Gaussian processes; environmental processes and their impact on public health; spatial epidemiology; stochastic process models; statistical learning from physical and mechanistic systems; survey sampling and survival analysis.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 5,19 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Hierarchical Modeling and Analysis for Spatial Data...

Imagen de archivo

Banerjee, Sudipto; Gelfand, Alan E.; Carlin, Bradley P.
Publicado por Chapman and Hall/CRC, 2025
ISBN 10: 1032508558 ISBN 13: 9781032508559
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9781032508559_new

Contactar al vendedor

Comprar nuevo

EUR 116,13
Convertir moneda
Gastos de envío: EUR 5,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Sudipto Banerjee
Publicado por Taylor & Francis Ltd, 2025
ISBN 10: 1032508558 ISBN 13: 9781032508559
Nuevo Tapa dura
Impresión bajo demanda

Librería: THE SAINT BOOKSTORE, Southport, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 500. Nº de ref. del artículo: C9781032508559

Contactar al vendedor

Comprar nuevo

EUR 141,42
Convertir moneda
Gastos de envío: EUR 7,63
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Sudipto Banerjee
Publicado por Taylor & Francis Ltd, 2025
ISBN 10: 1032508558 ISBN 13: 9781032508559
Nuevo Tapa dura

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. Hierarchical Modeling and Analysis for Spatial Data, Third Edition is the latest edition of this popular and authoritative text on Bayesian modeling and inference for spatial and spatial-temporal data. The text presents a comprehensive and up-to-date treatment of hierarchical and multilevel modeling for spatial and spatio-temporal data within a Bayesian framework. Over the past decade since the second edition, spatial statistics has evolved significantly driven by an explosion in data availability and advances in Bayesian computation. This edition reflects those changes, introducing new methods, expanded applications, and enhanced computational resources to support researchers and practitioners across disciplines, including environmental science, ecology, and public health.Key features of the third edition:A dedicated chapter on state-of-the-art Bayesian modeling of large spatial and spatio-temporal datasetsTwo new chapters on spatial point pattern analysis, covering both foundational and Bayesian perspectivesA new chapter on spatial data fusion, integrating diverse spatial data sources from different probabilistic mechanismsAn accessible introduction to GPS mapping, geodesic distances, and mathematical cartographyAn expanded special topics chapter, including spatial challenges with finite population modeling and spatial directional dataA thoroughly revised chapter on Bayesian inference, featuring an updated review of modern computational techniquesA dedicated GitHub repository providing R programs and solutions to selected exercises, ensuring continued access to evolving software developmentsWith refreshed content throughout, this edition serves as an essential reference for statisticians, data scientists, and researchers working with spatial data. Graduate students and professionals seeking a deep understanding of Bayesian spatial modeling will find this volume an invaluable resource for both theory and practice. The 3rd edition of this popular and authoritative text on Bayesian modeling and inference for spatial and spatial-temporal data presents a comprehensive presents a comprehensive and up-to-date treatment of hierarchical and multilevel modeling for spatial and spatio-temporal data within a Bayesian framework. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781032508559

Contactar al vendedor

Comprar nuevo

EUR 127,43
Convertir moneda
Gastos de envío: EUR 34,69
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Sudipto Banerjee
Publicado por Taylor & Francis Ltd, 2025
ISBN 10: 1032508558 ISBN 13: 9781032508559
Nuevo Tapa dura

Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. Hierarchical Modeling and Analysis for Spatial Data, Third Edition is the latest edition of this popular and authoritative text on Bayesian modeling and inference for spatial and spatial-temporal data. The text presents a comprehensive and up-to-date treatment of hierarchical and multilevel modeling for spatial and spatio-temporal data within a Bayesian framework. Over the past decade since the second edition, spatial statistics has evolved significantly driven by an explosion in data availability and advances in Bayesian computation. This edition reflects those changes, introducing new methods, expanded applications, and enhanced computational resources to support researchers and practitioners across disciplines, including environmental science, ecology, and public health.Key features of the third edition:A dedicated chapter on state-of-the-art Bayesian modeling of large spatial and spatio-temporal datasetsTwo new chapters on spatial point pattern analysis, covering both foundational and Bayesian perspectivesA new chapter on spatial data fusion, integrating diverse spatial data sources from different probabilistic mechanismsAn accessible introduction to GPS mapping, geodesic distances, and mathematical cartographyAn expanded special topics chapter, including spatial challenges with finite population modeling and spatial directional dataA thoroughly revised chapter on Bayesian inference, featuring an updated review of modern computational techniquesA dedicated GitHub repository providing R programs and solutions to selected exercises, ensuring continued access to evolving software developmentsWith refreshed content throughout, this edition serves as an essential reference for statisticians, data scientists, and researchers working with spatial data. Graduate students and professionals seeking a deep understanding of Bayesian spatial modeling will find this volume an invaluable resource for both theory and practice. The 3rd edition of this popular and authoritative text on Bayesian modeling and inference for spatial and spatial-temporal data presents a comprehensive presents a comprehensive and up-to-date treatment of hierarchical and multilevel modeling for spatial and spatio-temporal data within a Bayesian framework. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781032508559

Contactar al vendedor

Comprar nuevo

EUR 129,75
Convertir moneda
Gastos de envío: EUR 64,02
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito